Home > Research > Publications & Outputs > Search for leptoquark pair production decaying ...

Associated organisational unit

Links

Text available via DOI:

View graph of relations

Search for leptoquark pair production decaying into t e - t ¯ e + or t μ - t ¯ μ + in multi-lepton final states in pp collisions at s = 13 TeV with the ATLAS detector

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Search for leptoquark pair production decaying into t e - t ¯ e + or t μ - t ¯ μ + in multi-lepton final states in pp collisions at s = 13 TeV with the ATLAS detector. / The ATLAS collaboration ; Yexley, Melissa.
In: European Physical Journal C: Particles and Fields, Vol. 84, No. 8, 818, 14.08.2024.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

The ATLAS collaboration, Yexley M. Search for leptoquark pair production decaying into t e - t ¯ e + or t μ - t ¯ μ + in multi-lepton final states in pp collisions at s = 13 TeV with the ATLAS detector. European Physical Journal C: Particles and Fields. 2024 Aug 14;84(8):818. doi: 10.1140/epjc/s10052-024-12975-4

Author

Bibtex

@article{8143e5f61ea8481fafbbdd0ca1a6d970,
title = "Search for leptoquark pair production decaying into t e - t {\^A}¯ e + or t {\^I}¼ - t {\^A}¯ {\^I}¼ + in multi-lepton final states in pp collisions at s = 13 TeV with the ATLAS detector",
abstract = "A search for leptoquark pair production decaying into te-t{\^A}¯e+ or t{\^I}¼-t{\^A}¯{\^I}¼+ in final states with multiple leptons is presented. The search is based on a dataset of pp collisions at s=13TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb-1. Four signal regions, with the requirement of at least three light leptons (electron or muon) and at least two jets out of which at least one jet is identified as coming from a b-hadron, are considered based on the number of leptons of a given flavour. The main background processes are estimated using dedicated control regions in a simultaneous fit with the signal regions to data. No excess above the Standard Model background prediction is observed and 95% confidence level limits on the production cross section times branching ratio are derived as a function of the leptoquark mass. Under the assumption of exclusive decays into te- (t{\^I}¼-), the corresponding lower limit on the scalar mixed-generation leptoquark mass mLQmixd is at 1.58 (1.59) TeV and on the vector leptoquark mass mU~1 at 1.67 (1.67) TeV in the minimal coupling scenario and at 1.95 (1.95) TeV in the Yang{\^a}€“Mills scenario.",
author = "{The ATLAS collaboration} and A.E. Barton and I.A. Bertram and G. Borissov and E.V. Bouhova-Thacker and James Ferrando and H. Fox and R.C.W. Henderson and R.W.L. Jones and V. Kartvelishvili and P.A. Love and E.J. Marshall and L. Meng and D. Muenstermann and K. Rybacki and M. Smizanska and S. Spinali and A.M. Wharton and Melissa Yexley",
year = "2024",
month = aug,
day = "14",
doi = "10.1140/epjc/s10052-024-12975-4",
language = "English",
volume = "84",
journal = "European Physical Journal C: Particles and Fields",
issn = "1434-6044",
publisher = "SPRINGER",
number = "8",

}

RIS

TY - JOUR

T1 - Search for leptoquark pair production decaying into t e - t ¯ e + or t μ - t ¯ μ + in multi-lepton final states in pp collisions at s = 13 TeV with the ATLAS detector

AU - The ATLAS collaboration

AU - Barton, A.E.

AU - Bertram, I.A.

AU - Borissov, G.

AU - Bouhova-Thacker, E.V.

AU - Ferrando, James

AU - Fox, H.

AU - Henderson, R.C.W.

AU - Jones, R.W.L.

AU - Kartvelishvili, V.

AU - Love, P.A.

AU - Marshall, E.J.

AU - Meng, L.

AU - Muenstermann, D.

AU - Rybacki, K.

AU - Smizanska, M.

AU - Spinali, S.

AU - Wharton, A.M.

AU - Yexley, Melissa

PY - 2024/8/14

Y1 - 2024/8/14

N2 - A search for leptoquark pair production decaying into te-t¯e+ or tμ-t¯μ+ in final states with multiple leptons is presented. The search is based on a dataset of pp collisions at s=13TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb-1. Four signal regions, with the requirement of at least three light leptons (electron or muon) and at least two jets out of which at least one jet is identified as coming from a b-hadron, are considered based on the number of leptons of a given flavour. The main background processes are estimated using dedicated control regions in a simultaneous fit with the signal regions to data. No excess above the Standard Model background prediction is observed and 95% confidence level limits on the production cross section times branching ratio are derived as a function of the leptoquark mass. Under the assumption of exclusive decays into te- (tμ-), the corresponding lower limit on the scalar mixed-generation leptoquark mass mLQmixd is at 1.58 (1.59) TeV and on the vector leptoquark mass mU~1 at 1.67 (1.67) TeV in the minimal coupling scenario and at 1.95 (1.95) TeV in the Yang–Mills scenario.

AB - A search for leptoquark pair production decaying into te-t¯e+ or tμ-t¯μ+ in final states with multiple leptons is presented. The search is based on a dataset of pp collisions at s=13TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb-1. Four signal regions, with the requirement of at least three light leptons (electron or muon) and at least two jets out of which at least one jet is identified as coming from a b-hadron, are considered based on the number of leptons of a given flavour. The main background processes are estimated using dedicated control regions in a simultaneous fit with the signal regions to data. No excess above the Standard Model background prediction is observed and 95% confidence level limits on the production cross section times branching ratio are derived as a function of the leptoquark mass. Under the assumption of exclusive decays into te- (tμ-), the corresponding lower limit on the scalar mixed-generation leptoquark mass mLQmixd is at 1.58 (1.59) TeV and on the vector leptoquark mass mU~1 at 1.67 (1.67) TeV in the minimal coupling scenario and at 1.95 (1.95) TeV in the Yang–Mills scenario.

U2 - 10.1140/epjc/s10052-024-12975-4

DO - 10.1140/epjc/s10052-024-12975-4

M3 - Journal article

VL - 84

JO - European Physical Journal C: Particles and Fields

JF - European Physical Journal C: Particles and Fields

SN - 1434-6044

IS - 8

M1 - 818

ER -