Home > Research > Publications & Outputs > Search for single production of vector-like qua...

Links

Text available via DOI:

View graph of relations

Search for single production of vector-like quarks decaying into Wb in pp collisions at √s = 13 TeV with the ATLAS detector

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Search for single production of vector-like quarks decaying into Wb in pp collisions at √s = 13 TeV with the ATLAS detector. / Collaboration, ATLAS; Barton, A.E.; Bertram, I.A. et al.
In: Journal of High Energy Physics, Vol. 2019, No. 5, 164, 31.05.2019.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

Author

Bibtex

@article{44f0d1e1afe0495e98dee26f997b5408,
title = "Search for single production of vector-like quarks decaying into Wb in pp collisions at √s = 13 TeV with the ATLAS detector",
abstract = "A search for singly produced vector-like quarks Q, where Q can be either a T quark with charge +2/3 or a Y quark with charge −4/3, is performed in proton–proton collision data at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 36.1 fb−1, recorded with the ATLAS detector at the LHC in 2015 and 2016. The analysis targets Q → Wb decays where the W boson decays leptonically. No significant deviation from the expected Standard Model background is observed. Upper limits are set on the QWb coupling strength and the mixing between the Standard Model sector and a singlet T quark or a Y quark from a (B, Y) doublet or a (T, B, Y) triplet, taking into account the interference effects with the Standard Model background. The upper limits set on the mixing angle are as small as |sin θL| = 0.18 for a singlet T quark of mass 800 GeV, |sin θR| = 0.17 for a Y quark of mass 800 GeV in a (B, Y) doublet model and |sin θL| = 0.16 for a Y quark of mass 800 GeV in a (T, B, Y) triplet model. Within a (B, Y) doublet model, the limits set on the mixing parameter |sin θR| are comparable with the exclusion limits from electroweak precision observables in the mass range between about 900 GeV and 1250 GeV.[Figure not available: see fulltext.] {\textcopyright} 2019, The Author(s).",
keywords = "Exotics, Hadron-Hadron scattering (experiments)",
author = "ATLAS Collaboration and A.E. Barton and I.A. Bertram and G. Borissov and E.V. Bouhova-Thacker and H. Fox and R.C.W. Henderson and R.W.L. Jones and V. Kartvelishvili and R.E. Long and P.A. Love and D. Muenstermann and A.J. Parker and M. Smizanska and A.S. Tee and J. Walder and A.M. Wharton and B.W. Whitmore",
year = "2019",
month = may,
day = "31",
doi = "10.1007/JHEP05(2019)164",
language = "English",
volume = "2019",
journal = "Journal of High Energy Physics",
issn = "1029-8479",
publisher = "Springer-Verlag",
number = "5",

}

RIS

TY - JOUR

T1 - Search for single production of vector-like quarks decaying into Wb in pp collisions at √s = 13 TeV with the ATLAS detector

AU - Collaboration, ATLAS

AU - Barton, A.E.

AU - Bertram, I.A.

AU - Borissov, G.

AU - Bouhova-Thacker, E.V.

AU - Fox, H.

AU - Henderson, R.C.W.

AU - Jones, R.W.L.

AU - Kartvelishvili, V.

AU - Long, R.E.

AU - Love, P.A.

AU - Muenstermann, D.

AU - Parker, A.J.

AU - Smizanska, M.

AU - Tee, A.S.

AU - Walder, J.

AU - Wharton, A.M.

AU - Whitmore, B.W.

PY - 2019/5/31

Y1 - 2019/5/31

N2 - A search for singly produced vector-like quarks Q, where Q can be either a T quark with charge +2/3 or a Y quark with charge −4/3, is performed in proton–proton collision data at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 36.1 fb−1, recorded with the ATLAS detector at the LHC in 2015 and 2016. The analysis targets Q → Wb decays where the W boson decays leptonically. No significant deviation from the expected Standard Model background is observed. Upper limits are set on the QWb coupling strength and the mixing between the Standard Model sector and a singlet T quark or a Y quark from a (B, Y) doublet or a (T, B, Y) triplet, taking into account the interference effects with the Standard Model background. The upper limits set on the mixing angle are as small as |sin θL| = 0.18 for a singlet T quark of mass 800 GeV, |sin θR| = 0.17 for a Y quark of mass 800 GeV in a (B, Y) doublet model and |sin θL| = 0.16 for a Y quark of mass 800 GeV in a (T, B, Y) triplet model. Within a (B, Y) doublet model, the limits set on the mixing parameter |sin θR| are comparable with the exclusion limits from electroweak precision observables in the mass range between about 900 GeV and 1250 GeV.[Figure not available: see fulltext.] © 2019, The Author(s).

AB - A search for singly produced vector-like quarks Q, where Q can be either a T quark with charge +2/3 or a Y quark with charge −4/3, is performed in proton–proton collision data at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 36.1 fb−1, recorded with the ATLAS detector at the LHC in 2015 and 2016. The analysis targets Q → Wb decays where the W boson decays leptonically. No significant deviation from the expected Standard Model background is observed. Upper limits are set on the QWb coupling strength and the mixing between the Standard Model sector and a singlet T quark or a Y quark from a (B, Y) doublet or a (T, B, Y) triplet, taking into account the interference effects with the Standard Model background. The upper limits set on the mixing angle are as small as |sin θL| = 0.18 for a singlet T quark of mass 800 GeV, |sin θR| = 0.17 for a Y quark of mass 800 GeV in a (B, Y) doublet model and |sin θL| = 0.16 for a Y quark of mass 800 GeV in a (T, B, Y) triplet model. Within a (B, Y) doublet model, the limits set on the mixing parameter |sin θR| are comparable with the exclusion limits from electroweak precision observables in the mass range between about 900 GeV and 1250 GeV.[Figure not available: see fulltext.] © 2019, The Author(s).

KW - Exotics

KW - Hadron-Hadron scattering (experiments)

U2 - 10.1007/JHEP05(2019)164

DO - 10.1007/JHEP05(2019)164

M3 - Journal article

VL - 2019

JO - Journal of High Energy Physics

JF - Journal of High Energy Physics

SN - 1029-8479

IS - 5

M1 - 164

ER -