Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Simulation based composite likelihood
AU - Rimella, Lorenzo
AU - Jewell, Chris
AU - Fearnhead, Paul
PY - 2025/2/25
Y1 - 2025/2/25
N2 - Inference for high-dimensional hidden Markov models is challenging due to the exponential-in-dimension computational cost of calculating the likelihood. To address this issue, we introduce an innovative composite likelihood approach called “Simulation Based Composite Likelihood” (SimBa-CL). With SimBa-CL, we approximate the likelihood by the product of its marginals, which we estimate using Monte Carlo sampling. In a similar vein to approximate Bayesian computation (ABC), SimBa-CL requires multiple simulations from the model, but, in contrast to ABC, it provides a likelihood approximation that guides the optimization of the parameters. Leveraging automatic differentiation libraries, it is simple to calculate gradients and Hessians to not only speed up optimization but also to build approximate confidence sets. We present extensive empirical results which validate our theory and demonstrate its advantage over SMC, and apply SimBa-CL to real-world Aphtovirus data.
AB - Inference for high-dimensional hidden Markov models is challenging due to the exponential-in-dimension computational cost of calculating the likelihood. To address this issue, we introduce an innovative composite likelihood approach called “Simulation Based Composite Likelihood” (SimBa-CL). With SimBa-CL, we approximate the likelihood by the product of its marginals, which we estimate using Monte Carlo sampling. In a similar vein to approximate Bayesian computation (ABC), SimBa-CL requires multiple simulations from the model, but, in contrast to ABC, it provides a likelihood approximation that guides the optimization of the parameters. Leveraging automatic differentiation libraries, it is simple to calculate gradients and Hessians to not only speed up optimization but also to build approximate confidence sets. We present extensive empirical results which validate our theory and demonstrate its advantage over SMC, and apply SimBa-CL to real-world Aphtovirus data.
KW - Hidden Markov model
KW - Monte Carlo approximation
KW - Individual-based models
KW - Composite likelihood
U2 - 10.1007/s11222-025-10584-z
DO - 10.1007/s11222-025-10584-z
M3 - Journal article
VL - 35
JO - Statistics and Computing
JF - Statistics and Computing
SN - 0960-3174
IS - 3
M1 - 58
ER -