Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Simulation of spatial rogue waves in actively Q-switched solid-state laser with transverse mode locking
AU - Navitskaya, Roza
AU - Stashkevich, Ihar
AU - Derevyanko, Stanislav
AU - Karabchevsky, Alina
PY - 2024/4/1
Y1 - 2024/4/1
N2 - We report the generation of spatial rogue waves in the actively Q-switched Nd:YAG laser with several transverse modes and negligible nonlinear effects in the cavity. We discuss a basic theoretical model that is able to reproduce the experimental observations of spatial rogue waves in the output Q-switched pulses as a result of the coherent superposition of transverse modes. The simulated rogue wave statistics depends on the configuration of the lasing modes and take a more pronounced L-shaped form in the case of highly anisotropic mode distribution and reduced frequency spacing between the modes. For larger frequency spacing between the modes, the mode-locking effects result in the periodic dynamics of the transverse beam profile and formation of spatio-temporal rogue waves. These results indicate that transverse mode-locking and spatial symmetry breaking through anisotropy in the mode configuration represent factors responsible for spatial rogue wave emergence in multimode lasers with low nonlinearity.
AB - We report the generation of spatial rogue waves in the actively Q-switched Nd:YAG laser with several transverse modes and negligible nonlinear effects in the cavity. We discuss a basic theoretical model that is able to reproduce the experimental observations of spatial rogue waves in the output Q-switched pulses as a result of the coherent superposition of transverse modes. The simulated rogue wave statistics depends on the configuration of the lasing modes and take a more pronounced L-shaped form in the case of highly anisotropic mode distribution and reduced frequency spacing between the modes. For larger frequency spacing between the modes, the mode-locking effects result in the periodic dynamics of the transverse beam profile and formation of spatio-temporal rogue waves. These results indicate that transverse mode-locking and spatial symmetry breaking through anisotropy in the mode configuration represent factors responsible for spatial rogue wave emergence in multimode lasers with low nonlinearity.
U2 - 10.1016/j.optlastec.2023.110458
DO - 10.1016/j.optlastec.2023.110458
M3 - Journal article
VL - 171
JO - Optics & Laser Technology
JF - Optics & Laser Technology
M1 - 110458
ER -