Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Single and triple insulator Metal-Insulator-Metal diodes for infrared rectennas
AU - Tekin, Serdar B.
AU - Weerakkody, A.D.
AU - Sedghi, N.
AU - Hall, Stephen
AU - Werner, M.
AU - Wrench, J. S.
AU - Chalker, P.R.
AU - Mitrovic, I.Z.
PY - 2021/11/30
Y1 - 2021/11/30
N2 - Tunnel-barrier rectifiers comprising single and triple insulator configurations have been fabricated by atomic layer deposition (ALD) to investigate the insulator (Al 2O 3, Ta 2O 5, Nb 2O 5) layer quality and rectification performance for inclusion in rectenna arrays for infrared energy harvesting. ALD has provided superior control of nanometer film thickness (1–3 nm) as well as insulator film quality as tunneling has been found to be the dominant conduction mechanism for all fabricated devices. The key rectifier properties, such as asymmetry, non-linearity, responsivity and dynamic resistance have been assessed from current-voltage (I-V) measurements. The Au/Al 2O 3/Ti diode exhibits zero bias responsivity of −0.6 A/W, showing that it can be used for energy harvesting applications without the aid of external bias. The effect of resonant tunneling on rectification performance of triple insulator non-cascaded (Ta 2O 5/Nb 2O 5/Al 2O 3) and cascaded (Nb 2O 5/Ta 2O 5/Al 2O 3) rectifiers has been observed from experimental I-V characteristics and substantiated by theoretical simulations. Superior low-voltage asymmetry (6 at 0.1 V) and responsivity (4.3 A/W at 0.35 V) for triple insulator MI 3M rectifiers have been observed. The resonant tunneling does not provide enhanced rectification at low bias as previously reported, rather it has much smaller effect. The latter indicates that dissimilar metal electrodes rectifier configurations are more promising for inclusion in optical rectenna.
AB - Tunnel-barrier rectifiers comprising single and triple insulator configurations have been fabricated by atomic layer deposition (ALD) to investigate the insulator (Al 2O 3, Ta 2O 5, Nb 2O 5) layer quality and rectification performance for inclusion in rectenna arrays for infrared energy harvesting. ALD has provided superior control of nanometer film thickness (1–3 nm) as well as insulator film quality as tunneling has been found to be the dominant conduction mechanism for all fabricated devices. The key rectifier properties, such as asymmetry, non-linearity, responsivity and dynamic resistance have been assessed from current-voltage (I-V) measurements. The Au/Al 2O 3/Ti diode exhibits zero bias responsivity of −0.6 A/W, showing that it can be used for energy harvesting applications without the aid of external bias. The effect of resonant tunneling on rectification performance of triple insulator non-cascaded (Ta 2O 5/Nb 2O 5/Al 2O 3) and cascaded (Nb 2O 5/Ta 2O 5/Al 2O 3) rectifiers has been observed from experimental I-V characteristics and substantiated by theoretical simulations. Superior low-voltage asymmetry (6 at 0.1 V) and responsivity (4.3 A/W at 0.35 V) for triple insulator MI 3M rectifiers have been observed. The resonant tunneling does not provide enhanced rectification at low bias as previously reported, rather it has much smaller effect. The latter indicates that dissimilar metal electrodes rectifier configurations are more promising for inclusion in optical rectenna.
U2 - 10.1016/j.sse.2021.108096
DO - 10.1016/j.sse.2021.108096
M3 - Journal article
VL - 185
JO - Solid-State Electronics
JF - Solid-State Electronics
SN - 0038-1101
M1 - 108096
ER -