Home > Research > Publications & Outputs > Sodiation of hard carbon

Associated organisational unit

Electronic data

  • cphc.202100748-1

    Rights statement: This is the peer reviewed version of the following article: M. P. Mercer, S. Affleck, E. M. Gavilán-Arriazu, A. A. Zülke, P. A. Maughan, S. Trivedi, M. Fichtner, A. Reddy Munnangi, E. P. M. Leiva, H. E. Hoster, ChemPhysChem 2022, e202100748. which has been published in final form at https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cphc.202100748 This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.

    Accepted author manuscript, 3.76 MB, PDF document

    Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License

Links

Text available via DOI:

View graph of relations

Sodiation of hard carbon: how separating enthalpy and entropy contributions can find transitions hidden in the voltage profile

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
Close
Article numbere202100748
<mark>Journal publication date</mark>31/03/2022
<mark>Journal</mark>ChemPhysChem
Issue number5
Volume23
Publication StatusPublished
Early online date8/02/22
<mark>Original language</mark>English

Abstract

Sodium-ion batteries (NIBs) utilise cheaper materials than lithium-ion batteries (LIBs), and can thus be used in larger scale applications. The preferred anode material is hard carbon, because sodium cannot be inserted into graphite. We apply experimental entropy profiling (EP), where the cell temperature is changed under open circuit conditions. EP has been used to characterise LIBs; here, we demonstrate the first application of EP to any NIB material. The voltage versus sodiation fraction curves (voltage profiles) of hard carbon lack clear features, consisting only of a slope and a plateau, making it difficult to clarify the structural features of hard carbon that could optimise cell performance. We find additional features through EP that are masked in the voltage profiles. We fit lattice gas models of hard carbon sodiation to experimental EP and system enthalpy, obtaining: 1. a theoretical maximum capacity, 2. interlayer versus pore filled sodium with state of charge.

Bibliographic note

This is the peer reviewed version of the following article: M. P. Mercer, S. Affleck, E. M. Gavilán-Arriazu, A. A. Zülke, P. A. Maughan, S. Trivedi, M. Fichtner, A. Reddy Munnangi, E. P. M. Leiva, H. E. Hoster, ChemPhysChem 2022, e202100748. which has been published in final form at https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cphc.202100748 This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.