Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Solar cell parameter accuracy improvement, via refinement of the Co-Content function
T2 - Part 1: Theoretical analysis
AU - Rangel-Kuoppa, V.T.
PY - 2022/2/17
Y1 - 2022/2/17
N2 - In this Part 1 of this series of articles, the accuracy on the obtention of the shunt resistance (R sh), the series resistance (R s), the ideality factor (n), the light current (I lig), and the saturation current (I sat), via the use of the Co-content function CCV,I= ∫ 0VI-IscdV (where Isc=IV=0 ) is investigated theoretically, as function of the number of measured points per voltage ( PV ) and percentage noise ( pn ). Reasonable values are obtained for R sh, R s, and I lig, with PV = 11 measurement points per V if the pn is 0.1% or less. For a reasonable determination of n at least PV = 101 measurement points per V are needed. I sat determination requires pn of 0.01% or lower with at least PV = 101 measured points per V and should be evaluated at large values of V. The results given in this Part 1 are used in Part 2 to discuss the reported application of the CCV,I to obtain R sh, R s, n, I lig, and I sat found in the literature.
AB - In this Part 1 of this series of articles, the accuracy on the obtention of the shunt resistance (R sh), the series resistance (R s), the ideality factor (n), the light current (I lig), and the saturation current (I sat), via the use of the Co-content function CCV,I= ∫ 0VI-IscdV (where Isc=IV=0 ) is investigated theoretically, as function of the number of measured points per voltage ( PV ) and percentage noise ( pn ). Reasonable values are obtained for R sh, R s, and I lig, with PV = 11 measurement points per V if the pn is 0.1% or less. For a reasonable determination of n at least PV = 101 measurement points per V are needed. I sat determination requires pn of 0.01% or lower with at least PV = 101 measured points per V and should be evaluated at large values of V. The results given in this Part 1 are used in Part 2 to discuss the reported application of the CCV,I to obtain R sh, R s, n, I lig, and I sat found in the literature.
KW - co-content function
KW - ideality factor
KW - light current
KW - saturation current
KW - series resistance
KW - shunt resistance
KW - solar cell
U2 - 10.1088/2631-8695/ac4c36
DO - 10.1088/2631-8695/ac4c36
M3 - Journal article
VL - 4
JO - Engineering Research Express
JF - Engineering Research Express
SN - 2631-8695
IS - 1
M1 - 015022
ER -