Accepted author manuscript, 445 KB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Stability and convergence of dynamical decoupling with finite amplitude controls
AU - Burgarth, Daniel
AU - Facchi, Paolo
AU - Hillier, Robin
PY - 2022/11/30
Y1 - 2022/11/30
N2 - Dynamical decoupling is a key method to mitigate errors in a quantum mechanical system, and we studied it in a series of papers dealing, in particular, with the problems arising from unbounded Hamiltonians. The standard bangbang model of dynamical decoupling, which we also used in those papers, requires decoupling operations with infinite amplitude, which is, strictly speaking, unrealistic from a physical point of view. In this paper, we look at decoupling operations of finite amplitude, discuss under what assumptions dynamical decoupling works with such finite amplitude operations, and show how the bangbang description arises as a limit, hence justifying it as a reasonable approximation.
AB - Dynamical decoupling is a key method to mitigate errors in a quantum mechanical system, and we studied it in a series of papers dealing, in particular, with the problems arising from unbounded Hamiltonians. The standard bangbang model of dynamical decoupling, which we also used in those papers, requires decoupling operations with infinite amplitude, which is, strictly speaking, unrealistic from a physical point of view. In this paper, we look at decoupling operations of finite amplitude, discuss under what assumptions dynamical decoupling works with such finite amplitude operations, and show how the bangbang description arises as a limit, hence justifying it as a reasonable approximation.
U2 - 10.1063/5.0101259
DO - 10.1063/5.0101259
M3 - Journal article
VL - 63
JO - Journal of Mathematical Physics
JF - Journal of Mathematical Physics
SN - 0022-2488
IS - 11
M1 - 112206
ER -