Home > Research > Publications & Outputs > Studies of new Higgs boson interactions through...

Associated organisational unit

Links

Text available via DOI:

View graph of relations

Studies of new Higgs boson interactions through nonresonant HH production in the b b ¯ γγ final state in pp collisions at s = 13 TeV with the ATLAS detector

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Studies of new Higgs boson interactions through nonresonant HH production in the b b ¯ γγ final state in pp collisions at s = 13 TeV with the ATLAS detector. / The ATLAS collaboration.
In: Journal of High Energy Physics, Vol. 2024, No. 1, 66, 12.01.2024.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

The ATLAS collaboration. Studies of new Higgs boson interactions through nonresonant HH production in the b b ¯ γγ final state in pp collisions at s = 13 TeV with the ATLAS detector. Journal of High Energy Physics. 2024 Jan 12;2024(1):66. doi: 10.1007/jhep01(2024)066

Author

Bibtex

@article{025fc0733f8e4570b08643aab438acbf,
title = "Studies of new Higgs boson interactions through nonresonant HH production in the b b ¯ γγ final state in pp collisions at s = 13 TeV with the ATLAS detector",
abstract = "A search for nonresonant Higgs boson pair production in the bb¯γγ final state is performed using 140 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. This analysis supersedes and expands upon the previous nonresonant ATLAS results in this final state based on the same data sample. The analysis strategy is optimised to probe anomalous values not only of the Higgs (H) boson self-coupling modifier κλ but also of the quartic HHVV (V = W, Z) coupling modifier κ2V. No significant excess above the expected background from Standard Model processes is observed. An observed upper limit μHH < 4.0 is set at 95% confidence level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The 95% confidence intervals for the coupling modifiers are −1.4 < κλ < 6.9 and −0.5 < κ2V < 2.7, assuming all other Higgs boson couplings except the one under study are fixed to the Standard Model predictions. The results are interpreted in the Standard Model effective field theory and Higgs effective field theory frameworks in terms of constraints on the couplings of anomalous Higgs boson (self-)interactions.",
keywords = "Higgs Physics, Hadron-Hadron Scattering",
author = "{The ATLAS collaboration} and A.E. Barton and I.A. Bertram and G. Borissov and E.V. Bouhova-Thacker and R.A.M. Ferguson and H. Fox and Alina Hagan and R.C.W. Henderson and R.W.L. Jones and V. Kartvelishvili and P.A. Love and E.J. Marshall and L. Meng and D. Muenstermann and N. Ribaric and K. Rybacki and M. Smizanska and S. Spinali and A.M. Wharton",
year = "2024",
month = jan,
day = "12",
doi = "10.1007/jhep01(2024)066",
language = "English",
volume = "2024",
journal = "Journal of High Energy Physics",
issn = "1029-8479",
publisher = "Springer-Verlag",
number = "1",

}

RIS

TY - JOUR

T1 - Studies of new Higgs boson interactions through nonresonant HH production in the b b ¯ γγ final state in pp collisions at s = 13 TeV with the ATLAS detector

AU - The ATLAS collaboration

AU - Barton, A.E.

AU - Bertram, I.A.

AU - Borissov, G.

AU - Bouhova-Thacker, E.V.

AU - Ferguson, R.A.M.

AU - Fox, H.

AU - Hagan, Alina

AU - Henderson, R.C.W.

AU - Jones, R.W.L.

AU - Kartvelishvili, V.

AU - Love, P.A.

AU - Marshall, E.J.

AU - Meng, L.

AU - Muenstermann, D.

AU - Ribaric, N.

AU - Rybacki, K.

AU - Smizanska, M.

AU - Spinali, S.

AU - Wharton, A.M.

PY - 2024/1/12

Y1 - 2024/1/12

N2 - A search for nonresonant Higgs boson pair production in the bb¯γγ final state is performed using 140 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. This analysis supersedes and expands upon the previous nonresonant ATLAS results in this final state based on the same data sample. The analysis strategy is optimised to probe anomalous values not only of the Higgs (H) boson self-coupling modifier κλ but also of the quartic HHVV (V = W, Z) coupling modifier κ2V. No significant excess above the expected background from Standard Model processes is observed. An observed upper limit μHH < 4.0 is set at 95% confidence level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The 95% confidence intervals for the coupling modifiers are −1.4 < κλ < 6.9 and −0.5 < κ2V < 2.7, assuming all other Higgs boson couplings except the one under study are fixed to the Standard Model predictions. The results are interpreted in the Standard Model effective field theory and Higgs effective field theory frameworks in terms of constraints on the couplings of anomalous Higgs boson (self-)interactions.

AB - A search for nonresonant Higgs boson pair production in the bb¯γγ final state is performed using 140 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. This analysis supersedes and expands upon the previous nonresonant ATLAS results in this final state based on the same data sample. The analysis strategy is optimised to probe anomalous values not only of the Higgs (H) boson self-coupling modifier κλ but also of the quartic HHVV (V = W, Z) coupling modifier κ2V. No significant excess above the expected background from Standard Model processes is observed. An observed upper limit μHH < 4.0 is set at 95% confidence level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The 95% confidence intervals for the coupling modifiers are −1.4 < κλ < 6.9 and −0.5 < κ2V < 2.7, assuming all other Higgs boson couplings except the one under study are fixed to the Standard Model predictions. The results are interpreted in the Standard Model effective field theory and Higgs effective field theory frameworks in terms of constraints on the couplings of anomalous Higgs boson (self-)interactions.

KW - Higgs Physics

KW - Hadron-Hadron Scattering

U2 - 10.1007/jhep01(2024)066

DO - 10.1007/jhep01(2024)066

M3 - Journal article

VL - 2024

JO - Journal of High Energy Physics

JF - Journal of High Energy Physics

SN - 1029-8479

IS - 1

M1 - 66

ER -