Accepted author manuscript, 2.24 MB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Study on compressive stress-strain relationship of ultra-high performance concrete with coarse aggregates under and after high temperatures
AU - Xue, Congcong
AU - Xu, Haoming
AU - Yu, Min
AU - Mao, Xiaoyong
AU - Ding, Xiaoyan
AU - Ye, Jianqiao
PY - 2024/8/23
Y1 - 2024/8/23
N2 - Uniaxial compression tests are conducted on ultra-high performance concrete (UHPC) with different volume fractions of coarse aggregates (0 %, 10 %, 20 %, and 30 %) at temperatures ranging from room temperature to 900°C, both during and after high-temperature exposure. The compressive failure modes and the stress-strain curves of the ultra-high performance concrete with coarse aggregates (CA-UHPC) under and after high temperatures are obtained. A systematic analysis of the key characteristic parameters of the stress-strain curve, including axial compressive strength, elastic modulus, and peak strain, is carried out, and respective temperature-dependent calculation formulas are proposed. Experimental results show that the failure modes under and after high temperatures are similar, both exhibiting shear failure. It is found that both the temperature and the coarse aggregate contents affect the shape of the stress-strain curve. The uniaxial compressive performance of the CA-UHPC under and after high temperatures is compared. Finally, the uniaxial compressive stress-strain relationships of the CA-UHPC under and after high temperatures are established, considering the temperature, coarse aggregate content, and steel fiber content.
AB - Uniaxial compression tests are conducted on ultra-high performance concrete (UHPC) with different volume fractions of coarse aggregates (0 %, 10 %, 20 %, and 30 %) at temperatures ranging from room temperature to 900°C, both during and after high-temperature exposure. The compressive failure modes and the stress-strain curves of the ultra-high performance concrete with coarse aggregates (CA-UHPC) under and after high temperatures are obtained. A systematic analysis of the key characteristic parameters of the stress-strain curve, including axial compressive strength, elastic modulus, and peak strain, is carried out, and respective temperature-dependent calculation formulas are proposed. Experimental results show that the failure modes under and after high temperatures are similar, both exhibiting shear failure. It is found that both the temperature and the coarse aggregate contents affect the shape of the stress-strain curve. The uniaxial compressive performance of the CA-UHPC under and after high temperatures is compared. Finally, the uniaxial compressive stress-strain relationships of the CA-UHPC under and after high temperatures are established, considering the temperature, coarse aggregate content, and steel fiber content.
KW - After high temperature
KW - CA-UHPC
KW - Stress-strain relationship
KW - Under high temperature
KW - Uniaxial compression
U2 - 10.1016/j.conbuildmat.2024.137383
DO - 10.1016/j.conbuildmat.2024.137383
M3 - Journal article
AN - SCOPUS:85198510634
VL - 440
JO - Construction and Building Materials
JF - Construction and Building Materials
SN - 0950-0618
M1 - 137383
ER -