Home > Research > Publications & Outputs > Sub 10 ps carrier response times in electroabso...
View graph of relations

Sub 10 ps carrier response times in electroabsorption modulators using quantum well offsetting

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Sub 10 ps carrier response times in electroabsorption modulators using quantum well offsetting. / Daunt, Chris L. M.; Cleary, Ciaran S.; Manning, Robert J. et al.
In: IEEE Journal of Quantum Electronics, Vol. 48, No. 11, 11.2012, p. 1467-1475.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Daunt, CLM, Cleary, CS, Manning, RJ, Thomas, K, Young, RJ, Pelucchi, E, Corbett, B & Peters, FH 2012, 'Sub 10 ps carrier response times in electroabsorption modulators using quantum well offsetting', IEEE Journal of Quantum Electronics, vol. 48, no. 11, pp. 1467-1475. https://doi.org/10.1109/JQE.2012.2210862

APA

Daunt, C. L. M., Cleary, C. S., Manning, R. J., Thomas, K., Young, R. J., Pelucchi, E., Corbett, B., & Peters, F. H. (2012). Sub 10 ps carrier response times in electroabsorption modulators using quantum well offsetting. IEEE Journal of Quantum Electronics, 48(11), 1467-1475. https://doi.org/10.1109/JQE.2012.2210862

Vancouver

Daunt CLM, Cleary CS, Manning RJ, Thomas K, Young RJ, Pelucchi E et al. Sub 10 ps carrier response times in electroabsorption modulators using quantum well offsetting. IEEE Journal of Quantum Electronics. 2012 Nov;48(11):1467-1475. doi: 10.1109/JQE.2012.2210862

Author

Daunt, Chris L. M. ; Cleary, Ciaran S. ; Manning, Robert J. et al. / Sub 10 ps carrier response times in electroabsorption modulators using quantum well offsetting. In: IEEE Journal of Quantum Electronics. 2012 ; Vol. 48, No. 11. pp. 1467-1475.

Bibtex

@article{55640fc8236e4908bae91a265069e59f,
title = "Sub 10 ps carrier response times in electroabsorption modulators using quantum well offsetting",
abstract = "Sub 10 ps photocarrier response time in an electroabsoption modulator using a custom epitaxy structure is demonstrated. This design used quantum well offsetting, carbon doping, and valence band discontinuity minimization, to achieve a 3.5 ps response time, when biased at -4.5 V. The quantum well offsetting also allows bandwidth optimization for a specific extinction ratio.",
keywords = "DESIGN, RECOVERY, Carrier transit time, BIPOLAR-TRANSISTOR STRUCTURES, epitaxy optimization, CIRCUITS, INP, ZN, LASERS, electro-absorption modulator, quantum confined Stark effect, SATURATION, INTEGRATION",
author = "Daunt, {Chris L. M.} and Cleary, {Ciaran S.} and Manning, {Robert J.} and Kevin Thomas and Young, {Robert J.} and Emanuele Pelucchi and Brian Corbett and Peters, {Frank H.}",
year = "2012",
month = nov,
doi = "10.1109/JQE.2012.2210862",
language = "English",
volume = "48",
pages = "1467--1475",
journal = "IEEE Journal of Quantum Electronics",
issn = "0018-9197",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
number = "11",

}

RIS

TY - JOUR

T1 - Sub 10 ps carrier response times in electroabsorption modulators using quantum well offsetting

AU - Daunt, Chris L. M.

AU - Cleary, Ciaran S.

AU - Manning, Robert J.

AU - Thomas, Kevin

AU - Young, Robert J.

AU - Pelucchi, Emanuele

AU - Corbett, Brian

AU - Peters, Frank H.

PY - 2012/11

Y1 - 2012/11

N2 - Sub 10 ps photocarrier response time in an electroabsoption modulator using a custom epitaxy structure is demonstrated. This design used quantum well offsetting, carbon doping, and valence band discontinuity minimization, to achieve a 3.5 ps response time, when biased at -4.5 V. The quantum well offsetting also allows bandwidth optimization for a specific extinction ratio.

AB - Sub 10 ps photocarrier response time in an electroabsoption modulator using a custom epitaxy structure is demonstrated. This design used quantum well offsetting, carbon doping, and valence band discontinuity minimization, to achieve a 3.5 ps response time, when biased at -4.5 V. The quantum well offsetting also allows bandwidth optimization for a specific extinction ratio.

KW - DESIGN

KW - RECOVERY

KW - Carrier transit time

KW - BIPOLAR-TRANSISTOR STRUCTURES

KW - epitaxy optimization

KW - CIRCUITS

KW - INP

KW - ZN

KW - LASERS

KW - electro-absorption modulator

KW - quantum confined Stark effect

KW - SATURATION

KW - INTEGRATION

U2 - 10.1109/JQE.2012.2210862

DO - 10.1109/JQE.2012.2210862

M3 - Journal article

VL - 48

SP - 1467

EP - 1475

JO - IEEE Journal of Quantum Electronics

JF - IEEE Journal of Quantum Electronics

SN - 0018-9197

IS - 11

ER -