Home > Research > Publications & Outputs > Superclustering with the Atacama Cosmology Tele...

Links

Text available via DOI:

View graph of relations

Superclustering with the Atacama Cosmology Telescope and Dark Energy Survey. II. Anisotropic Large-scale Coherence in Hot Gas, Galaxies, and Dark Matter

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Superclustering with the Atacama Cosmology Telescope and Dark Energy Survey. II. Anisotropic Large-scale Coherence in Hot Gas, Galaxies, and Dark Matter. / Lokken, M.; van Engelen, A.; Aguena, M. et al.
In: The Astrophysical Journal, Vol. 982, No. 2, 186, 01.04.2025.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Lokken, M, van Engelen, A, Aguena, M, Allam, SS, Anbajagane, D, Bacon, D, Baxter, E, Blazek, J, Bocquet, S, Bond, JR, Brooks, D, Calabrese, E, Carnero Rosell, A, Carretero, J, Costanzi, M, da Costa, LN, Coulton, WR, De Vicente, J, Desai, S, Doel, P, Doux, C, Duivenvoorden, AJ, Dunkley, J, Huang, Z, Everett, S, Ferrero, I, Frieman, J, García-Bellido, J, Gatti, M, Gaztanaga, E, Giannini, G, Gluscevic, V, Gruen, D, Gruendl, RA, Guan, Y, Gutierrez, G, Hinton, SR, Hlozek, R, Hollowood, DL, Honscheid, K, James, DJ, Kuehn, K, Lahav, O, Lee, S, Li, Z, Madhavacheril, M, Marques, GA, Marshall, JL, Mena-Fernández, J, Menanteau, F, Miquel, R, Myles, J, Niemack, MD, Pandey, S, Pereira, MES, Pieres, A, Plazas Malagón, AA, Porredon, A, Rodríguez-Monroy, M, Roodman, A, Samuroff, S, Sanchez, E, Sanchez Cid, D, Santiago, B, Schubnell, M, Sevilla-Noarbe, I, Sifón, C, Smith, M, Staggs, ST, Suchyta, E, Swanson, MEC, Tarle, G, To, C-H, Weaverdyck, N, Wiseman, P & Wollack, EJ 2025, 'Superclustering with the Atacama Cosmology Telescope and Dark Energy Survey. II. Anisotropic Large-scale Coherence in Hot Gas, Galaxies, and Dark Matter', The Astrophysical Journal, vol. 982, no. 2, 186. https://doi.org/10.3847/1538-4357/adb622

APA

Lokken, M., van Engelen, A., Aguena, M., Allam, S. S., Anbajagane, D., Bacon, D., Baxter, E., Blazek, J., Bocquet, S., Bond, J. R., Brooks, D., Calabrese, E., Carnero Rosell, A., Carretero, J., Costanzi, M., da Costa, L. N., Coulton, W. R., De Vicente, J., Desai, S., ... Wollack, E. J. (2025). Superclustering with the Atacama Cosmology Telescope and Dark Energy Survey. II. Anisotropic Large-scale Coherence in Hot Gas, Galaxies, and Dark Matter. The Astrophysical Journal, 982(2), Article 186. https://doi.org/10.3847/1538-4357/adb622

Vancouver

Lokken M, van Engelen A, Aguena M, Allam SS, Anbajagane D, Bacon D et al. Superclustering with the Atacama Cosmology Telescope and Dark Energy Survey. II. Anisotropic Large-scale Coherence in Hot Gas, Galaxies, and Dark Matter. The Astrophysical Journal. 2025 Apr 1;982(2):186. Epub 2025 Mar 28. doi: 10.3847/1538-4357/adb622

Author

Lokken, M. ; van Engelen, A. ; Aguena, M. et al. / Superclustering with the Atacama Cosmology Telescope and Dark Energy Survey. II. Anisotropic Large-scale Coherence in Hot Gas, Galaxies, and Dark Matter. In: The Astrophysical Journal. 2025 ; Vol. 982, No. 2.

Bibtex

@article{fb5e7e2321f24574af4e6e39da322396,
title = "Superclustering with the Atacama Cosmology Telescope and Dark Energy Survey. II. Anisotropic Large-scale Coherence in Hot Gas, Galaxies, and Dark Matter",
abstract = "Statistics that capture the directional dependence of the baryon distribution in the cosmic web enable unique tests of cosmology and astrophysical feedback. We use constrained oriented stacking of thermal Sunyaev–Zel{\textquoteright}dovich (tSZ) maps to measure the anisotropic distribution of hot gas 2.5–40 Mpc away from galaxy clusters embedded in massive filaments and superclusters. The cluster selection and orientation (at a scale of ∼15 Mpc) use Dark Energy Survey (DES) Year 3 data, while expanded tSZ maps from the Atacama Cosmology Telescope Data Release 6 enable a ∼3× more significant measurement of the extended gas compared to the technique{\textquoteright}s proof-of-concept. Decomposing stacks into cosine multipoles of order m, we detect a dipole (m = 1) and quadrupole (m = 2) at 8σ–10σ, as well as evidence for m = 4 signal at up to 6σ, indicating sensitivity to late-time non-Gaussianity. We compare to Cardinal simulations with spherical gas models pasted onto dark matter halos. The fiducial tSZ data can discriminate between two models that deplete pressure differently in low-mass halos (mimicking astrophysical feedback), preferring higher average pressure in extended structures. However, uncertainty in the amount of cosmic infrared background contamination reduces the constraining power. Additionally, we apply the technique to DES galaxy density and weak lensing to study for the first time their oriented relationships with tSZ. In the tSZ-to-lensing relation, averaged on 7.5 Mpc (transverse) scales, we observe dependence on redshift but not shape or radial distance. Thus, on large scales, the superclustering of gas pressure, galaxies, and total matter is coherent in shape and extent.",
keywords = "Sunyaev-Zeldovich effect, Intergalactic filaments, Superclusters, Cosmology, Cosmic web, Galaxy clusters, Large-scale structure of the universe, Weak gravitational lensing",
author = "M. Lokken and {van Engelen}, A. and M. Aguena and Allam, {S. S.} and D. Anbajagane and D. Bacon and E. Baxter and J. Blazek and S. Bocquet and Bond, {J. R.} and D. Brooks and E. Calabrese and {Carnero Rosell}, A. and J. Carretero and M. Costanzi and {da Costa}, {L. N.} and Coulton, {W. R.} and {De Vicente}, J. and S. Desai and P. Doel and C. Doux and Duivenvoorden, {A. J.} and J. Dunkley and Z. Huang and S. Everett and I. Ferrero and J. Frieman and J. Garc{\'i}a-Bellido and M. Gatti and E. Gaztanaga and G. Giannini and Vera Gluscevic and D. Gruen and Gruendl, {R. A.} and Y. Guan and G. Gutierrez and Hinton, {S. R.} and R. Hlozek and Hollowood, {D. L.} and K. Honscheid and James, {D. J.} and K. Kuehn and O. Lahav and S. Lee and Z. Li and M. Madhavacheril and Marques, {G. A.} and Marshall, {J. L.} and J. Mena-Fern{\'a}ndez and F. Menanteau and R. Miquel and J. Myles and Niemack, {M. D.} and S. Pandey and Pereira, {M. E. S.} and A. Pieres and {Plazas Malag{\'o}n}, {A. A.} and A. Porredon and M. Rodr{\'i}guez-Monroy and A. Roodman and S. Samuroff and E. Sanchez and {Sanchez Cid}, D. and B. Santiago and M. Schubnell and I. Sevilla-Noarbe and C. Sif{\'o}n and M. Smith and Staggs, {S. T.} and E. Suchyta and Swanson, {M. E. C.} and G. Tarle and C-H. To and N. Weaverdyck and P. Wiseman and Wollack, {E. J.}",
year = "2025",
month = apr,
day = "1",
doi = "10.3847/1538-4357/adb622",
language = "English",
volume = "982",
journal = "The Astrophysical Journal",
issn = "0004-637X",
publisher = "Institute of Physics Publishing",
number = "2",

}

RIS

TY - JOUR

T1 - Superclustering with the Atacama Cosmology Telescope and Dark Energy Survey. II. Anisotropic Large-scale Coherence in Hot Gas, Galaxies, and Dark Matter

AU - Lokken, M.

AU - van Engelen, A.

AU - Aguena, M.

AU - Allam, S. S.

AU - Anbajagane, D.

AU - Bacon, D.

AU - Baxter, E.

AU - Blazek, J.

AU - Bocquet, S.

AU - Bond, J. R.

AU - Brooks, D.

AU - Calabrese, E.

AU - Carnero Rosell, A.

AU - Carretero, J.

AU - Costanzi, M.

AU - da Costa, L. N.

AU - Coulton, W. R.

AU - De Vicente, J.

AU - Desai, S.

AU - Doel, P.

AU - Doux, C.

AU - Duivenvoorden, A. J.

AU - Dunkley, J.

AU - Huang, Z.

AU - Everett, S.

AU - Ferrero, I.

AU - Frieman, J.

AU - García-Bellido, J.

AU - Gatti, M.

AU - Gaztanaga, E.

AU - Giannini, G.

AU - Gluscevic, Vera

AU - Gruen, D.

AU - Gruendl, R. A.

AU - Guan, Y.

AU - Gutierrez, G.

AU - Hinton, S. R.

AU - Hlozek, R.

AU - Hollowood, D. L.

AU - Honscheid, K.

AU - James, D. J.

AU - Kuehn, K.

AU - Lahav, O.

AU - Lee, S.

AU - Li, Z.

AU - Madhavacheril, M.

AU - Marques, G. A.

AU - Marshall, J. L.

AU - Mena-Fernández, J.

AU - Menanteau, F.

AU - Miquel, R.

AU - Myles, J.

AU - Niemack, M. D.

AU - Pandey, S.

AU - Pereira, M. E. S.

AU - Pieres, A.

AU - Plazas Malagón, A. A.

AU - Porredon, A.

AU - Rodríguez-Monroy, M.

AU - Roodman, A.

AU - Samuroff, S.

AU - Sanchez, E.

AU - Sanchez Cid, D.

AU - Santiago, B.

AU - Schubnell, M.

AU - Sevilla-Noarbe, I.

AU - Sifón, C.

AU - Smith, M.

AU - Staggs, S. T.

AU - Suchyta, E.

AU - Swanson, M. E. C.

AU - Tarle, G.

AU - To, C-H.

AU - Weaverdyck, N.

AU - Wiseman, P.

AU - Wollack, E. J.

PY - 2025/4/1

Y1 - 2025/4/1

N2 - Statistics that capture the directional dependence of the baryon distribution in the cosmic web enable unique tests of cosmology and astrophysical feedback. We use constrained oriented stacking of thermal Sunyaev–Zel’dovich (tSZ) maps to measure the anisotropic distribution of hot gas 2.5–40 Mpc away from galaxy clusters embedded in massive filaments and superclusters. The cluster selection and orientation (at a scale of ∼15 Mpc) use Dark Energy Survey (DES) Year 3 data, while expanded tSZ maps from the Atacama Cosmology Telescope Data Release 6 enable a ∼3× more significant measurement of the extended gas compared to the technique’s proof-of-concept. Decomposing stacks into cosine multipoles of order m, we detect a dipole (m = 1) and quadrupole (m = 2) at 8σ–10σ, as well as evidence for m = 4 signal at up to 6σ, indicating sensitivity to late-time non-Gaussianity. We compare to Cardinal simulations with spherical gas models pasted onto dark matter halos. The fiducial tSZ data can discriminate between two models that deplete pressure differently in low-mass halos (mimicking astrophysical feedback), preferring higher average pressure in extended structures. However, uncertainty in the amount of cosmic infrared background contamination reduces the constraining power. Additionally, we apply the technique to DES galaxy density and weak lensing to study for the first time their oriented relationships with tSZ. In the tSZ-to-lensing relation, averaged on 7.5 Mpc (transverse) scales, we observe dependence on redshift but not shape or radial distance. Thus, on large scales, the superclustering of gas pressure, galaxies, and total matter is coherent in shape and extent.

AB - Statistics that capture the directional dependence of the baryon distribution in the cosmic web enable unique tests of cosmology and astrophysical feedback. We use constrained oriented stacking of thermal Sunyaev–Zel’dovich (tSZ) maps to measure the anisotropic distribution of hot gas 2.5–40 Mpc away from galaxy clusters embedded in massive filaments and superclusters. The cluster selection and orientation (at a scale of ∼15 Mpc) use Dark Energy Survey (DES) Year 3 data, while expanded tSZ maps from the Atacama Cosmology Telescope Data Release 6 enable a ∼3× more significant measurement of the extended gas compared to the technique’s proof-of-concept. Decomposing stacks into cosine multipoles of order m, we detect a dipole (m = 1) and quadrupole (m = 2) at 8σ–10σ, as well as evidence for m = 4 signal at up to 6σ, indicating sensitivity to late-time non-Gaussianity. We compare to Cardinal simulations with spherical gas models pasted onto dark matter halos. The fiducial tSZ data can discriminate between two models that deplete pressure differently in low-mass halos (mimicking astrophysical feedback), preferring higher average pressure in extended structures. However, uncertainty in the amount of cosmic infrared background contamination reduces the constraining power. Additionally, we apply the technique to DES galaxy density and weak lensing to study for the first time their oriented relationships with tSZ. In the tSZ-to-lensing relation, averaged on 7.5 Mpc (transverse) scales, we observe dependence on redshift but not shape or radial distance. Thus, on large scales, the superclustering of gas pressure, galaxies, and total matter is coherent in shape and extent.

KW - Sunyaev-Zeldovich effect

KW - Intergalactic filaments

KW - Superclusters

KW - Cosmology

KW - Cosmic web

KW - Galaxy clusters

KW - Large-scale structure of the universe

KW - Weak gravitational lensing

U2 - 10.3847/1538-4357/adb622

DO - 10.3847/1538-4357/adb622

M3 - Journal article

VL - 982

JO - The Astrophysical Journal

JF - The Astrophysical Journal

SN - 0004-637X

IS - 2

M1 - 186

ER -