Accepted author manuscript, 352 KB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Other version, 430 KB, PDF document
Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Letter › peer-review
Research output: Contribution to Journal/Magazine › Letter › peer-review
}
TY - JOUR
T1 - T2K measurements of muon neutrino and antineutrino disappearance using $3.13\times 10^{21}$ protons on target
AU - T2K Collaboration
AU - Dealtry, T.
AU - Doyle, T. A.
AU - Finch, A. J.
AU - Kormos, L. L.
AU - Nowak, J.
AU - O'Keeffe, H. M.
AU - Ratoff, P. N.
AU - Walsh, J. G.
PY - 2021/1/1
Y1 - 2021/1/1
N2 - We report measurements by the T2K experiment of the parameters $\theta_23$ and $\Delta m^2_{32}$ which govern the disappearance of muon neutrinos and antineutrinos in the three-flavor PMNSneutrino oscillation model at T2K's neutrino energy and propagation distance. Utilizing the ability of the experiment to run with either a mainly neutrino or a mainly antineutrino beam, muon-like events from each beam mode are used to measure these parameters separately for neutrino and antineutrino oscillations. Data taken from $1.49\times 10^{21}$ protons on target (POT) in neutrino mode and $1.64\times 10^21$ POT in antineutrino mode are used. Assuming the normal neutrino mass ordering the best-fit values obtained by T2K were $\sin^2\theta_{23}=0.51^{+0.06}_{-0.07}$ $(0.43^{+0.21}_{-0.05})$ and $\Delta m^2_{32}=2.47^{+0.08}_{-0.09} (2.50^{+0.18}_{-0.13})$ $eV^2/c^4$. for neutrinos (antineutrinos). No significant differences between the values of the parameters describing the disappearance of muon neutrinos and antineutrinos were observed. An analysis using an effective two-flavour neutrino oscillation model where the sine of the mixing angle is allowed to take non-physical values larger than 1 is also performed to check the consistency of our data with the three-flavor model. Our data were found to be consistent with a physical value for the mixing angle.
AB - We report measurements by the T2K experiment of the parameters $\theta_23$ and $\Delta m^2_{32}$ which govern the disappearance of muon neutrinos and antineutrinos in the three-flavor PMNSneutrino oscillation model at T2K's neutrino energy and propagation distance. Utilizing the ability of the experiment to run with either a mainly neutrino or a mainly antineutrino beam, muon-like events from each beam mode are used to measure these parameters separately for neutrino and antineutrino oscillations. Data taken from $1.49\times 10^{21}$ protons on target (POT) in neutrino mode and $1.64\times 10^21$ POT in antineutrino mode are used. Assuming the normal neutrino mass ordering the best-fit values obtained by T2K were $\sin^2\theta_{23}=0.51^{+0.06}_{-0.07}$ $(0.43^{+0.21}_{-0.05})$ and $\Delta m^2_{32}=2.47^{+0.08}_{-0.09} (2.50^{+0.18}_{-0.13})$ $eV^2/c^4$. for neutrinos (antineutrinos). No significant differences between the values of the parameters describing the disappearance of muon neutrinos and antineutrinos were observed. An analysis using an effective two-flavour neutrino oscillation model where the sine of the mixing angle is allowed to take non-physical values larger than 1 is also performed to check the consistency of our data with the three-flavor model. Our data were found to be consistent with a physical value for the mixing angle.
KW - hep-ex
U2 - 10.1103/PhysRevD.103.L011101
DO - 10.1103/PhysRevD.103.L011101
M3 - Letter
VL - 103
JO - Physical Review D
JF - Physical Review D
SN - 1550-7998
IS - 1
M1 - L011101
ER -