Final published version
Licence: Unspecified
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
}
TY - GEN
T1 - Terahertz polarisation modulator by electronic control of graphene loaded chiral metamaterial device
AU - Almond, Nikita W.
AU - Kindness, Stephen J.
AU - Michailow, Wladislaw
AU - Wei, Binbin
AU - Jakob, Lukas
AU - Braeuninger-Weimer, Philipp
AU - Hofmann, Stephan
AU - Beere, Harvey E.
AU - Ritchie, David A.
AU - Degl'Innocenti, Riccardo
PY - 2019/1/1
Y1 - 2019/1/1
N2 - Terahertz (THz) science and technology has experienced tremendous progress in recent years, such as in spectroscopy, imaging, pharmaceutical research [1] and wireless communications. These applications require electrically tuneable devices to modulate the THz properties, including the amplitude, frequency and polarization. The integration of resonant plasmonic/metamaterial devices with graphene, has proved a successful route for the realisation of fast reconfigurable, efficient THz optoelectronic devices [2], via electrical tuning of graphene integrated with plasmonic resonant structures. An active THz modulator is presented based on a chiral metamaterial array containing metallic features, loaded with graphene. The device makes use of an electromagnetically induced transparency analogue produced via the capacitive coupling of bright and dark resonators, the latter actively damped with graphene, exploited for frequency modulation in Ref. [2]. The active area is 1.2 x 1.2 mm, consisting of a 2D chiral metamaterial array comprising 27 x 27 unit cells, shown in Fig. 1a. The resonators were defined using electron-beam lithography, and thermal evaporation of Ti/Au (10/70nm). These features were deposited on top of a 300 nm insulating layer of SiO2 on a boron p-doped silicon substrate. Chemical vapour deposition grown graphene was defined into 3.25 x 3.25 µm2 patches through e-beam lithography.
AB - Terahertz (THz) science and technology has experienced tremendous progress in recent years, such as in spectroscopy, imaging, pharmaceutical research [1] and wireless communications. These applications require electrically tuneable devices to modulate the THz properties, including the amplitude, frequency and polarization. The integration of resonant plasmonic/metamaterial devices with graphene, has proved a successful route for the realisation of fast reconfigurable, efficient THz optoelectronic devices [2], via electrical tuning of graphene integrated with plasmonic resonant structures. An active THz modulator is presented based on a chiral metamaterial array containing metallic features, loaded with graphene. The device makes use of an electromagnetically induced transparency analogue produced via the capacitive coupling of bright and dark resonators, the latter actively damped with graphene, exploited for frequency modulation in Ref. [2]. The active area is 1.2 x 1.2 mm, consisting of a 2D chiral metamaterial array comprising 27 x 27 unit cells, shown in Fig. 1a. The resonators were defined using electron-beam lithography, and thermal evaporation of Ti/Au (10/70nm). These features were deposited on top of a 300 nm insulating layer of SiO2 on a boron p-doped silicon substrate. Chemical vapour deposition grown graphene was defined into 3.25 x 3.25 µm2 patches through e-beam lithography.
M3 - Conference contribution/Paper
AN - SCOPUS:85084586308
VL - 2019
T3 - Optics InfoBase Conference Papers
BT - European Quantum Electronics Conference, EQEC_2019
PB - OSA - The Optical Society
T2 - European Quantum Electronics Conference, EQEC_2019
Y2 - 23 June 2019 through 27 June 2019
ER -