Accepted author manuscript, 310 KB, PDF document
Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - The correct and unusual coordinate transformation rules for electromagnetic quadrupoles
AU - Gratus, Jonathan
AU - Banaszek, Thomas
PY - 2018/5
Y1 - 2018/5
N2 - Despite being studied for over a century, the use of quadrupoles have been limited to Cartesian coordinates in flat spacetime due to the incorrect transformation rules used to define them. Here the correct transformation rules are derived, which are particularly unusual as they involve second derivatives of the coordinate transformation and an integral. Transformations involving integrals have not been seen before. This is significantly different from the familiar transformation rules for a dipole, where the components transform as tensors. It enables quadrupoles to be correctly defined in general relativity and to prescribe the equations of motion for a quadrupole in a coordinate system adapted to its motion and then transform them to the laboratory coordinates. An example is given of another unusual feature: a quadrupole which is free of dipole terms in polar coordinates has dipole terms in Cartesian coordinates. It is shown that dipoles, electric dipoles, quadrupoles and electric quadrupoles can be defined without reference to a metric and in a coordinates free manner. This is particularly useful given their complicated coordinate transformation.
AB - Despite being studied for over a century, the use of quadrupoles have been limited to Cartesian coordinates in flat spacetime due to the incorrect transformation rules used to define them. Here the correct transformation rules are derived, which are particularly unusual as they involve second derivatives of the coordinate transformation and an integral. Transformations involving integrals have not been seen before. This is significantly different from the familiar transformation rules for a dipole, where the components transform as tensors. It enables quadrupoles to be correctly defined in general relativity and to prescribe the equations of motion for a quadrupole in a coordinate system adapted to its motion and then transform them to the laboratory coordinates. An example is given of another unusual feature: a quadrupole which is free of dipole terms in polar coordinates has dipole terms in Cartesian coordinates. It is shown that dipoles, electric dipoles, quadrupoles and electric quadrupoles can be defined without reference to a metric and in a coordinates free manner. This is particularly useful given their complicated coordinate transformation.
KW - Tensor distributions
KW - Multipole expansions
KW - DeRham currents
KW - Pre-metric electromagnetism
KW - Coordinate free approach
KW - Electric quadrupoles
U2 - 10.1098/rspa.2017.0652
DO - 10.1098/rspa.2017.0652
M3 - Journal article
VL - 474
JO - Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
JF - Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
SN - 1364-5021
IS - 2213
M1 - 20170652
ER -