Final published version, 315 KB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - The discriminatory value of cardiorespiratory interactions in distinguishing awake from anaesthetised states: a randomised observational study
AU - Kenwright, David Alasdair
AU - Bernjak, Alan
AU - Draegni, Tomas
AU - Dzeroski, Saso
AU - Entwistle, Michael
AU - Horvat, Martin
AU - Kvandal, Per
AU - Landsverk, Svein Aslak
AU - McClintock, Peter Vaughan Elsmere
AU - Musizza, Bojan
AU - Petrovcic, J.
AU - Raeder, Johan
AU - Sheppard, Lawrence
AU - Smith, Andrew F
AU - Stankovski, Tomislav
AU - Stefanovska, Aneta
PY - 2015/12
Y1 - 2015/12
N2 - Depth of anaesthesia monitors usually analyse cerebral function with or without other physiological signals; noninvasive monitoring of the measured cardiorespiratory signals alone would offer a simple, practical alternative. We aimed to investigate whether such signals, analysed with novel, non-linear dynamic methods, would distinguish between the awake and anaesthetised states. We recorded ECG, respiration, skin temperature, pulse and skin conductivity before and during general anaesthesia in 27 subjects in good cardiovascular health, randomly allocated to receive propofol or sevoflurane. Mean values, variability and dynamic interactions were determined. Respiratory rate (p = 0.0002), skin conductivity (p = 0.03) and skin temperature (p = 0.00006) changed with sevoflurane, and skin temperature (p = 0.0005) with propofol. Pulse transit time increased by 17% with sevoflurane (p = 0.02) and 11% with propofol (p = 0.007). Sevoflurane reduced the wavelet energy of heart (p = 0.0004) and respiratory (p = 0.02) rate variability at all frequencies, whereas propofol decreased only the heart rate variability below 0.021 Hz (p < 0.05). The phase coherence was reduced by both agents at frequencies below 0.145 Hz (p < 0.05), whereas the cardiorespiratory synchronisation time was increased (p < 0.05). A classification analysis based on an optimal set of discriminatory parameters distinguished with 95% success between the awake and anaesthetised states. We suggest that these results can contribute to the design of new monitors of anaesthetic depth based on cardiovascular signals alone.
AB - Depth of anaesthesia monitors usually analyse cerebral function with or without other physiological signals; noninvasive monitoring of the measured cardiorespiratory signals alone would offer a simple, practical alternative. We aimed to investigate whether such signals, analysed with novel, non-linear dynamic methods, would distinguish between the awake and anaesthetised states. We recorded ECG, respiration, skin temperature, pulse and skin conductivity before and during general anaesthesia in 27 subjects in good cardiovascular health, randomly allocated to receive propofol or sevoflurane. Mean values, variability and dynamic interactions were determined. Respiratory rate (p = 0.0002), skin conductivity (p = 0.03) and skin temperature (p = 0.00006) changed with sevoflurane, and skin temperature (p = 0.0005) with propofol. Pulse transit time increased by 17% with sevoflurane (p = 0.02) and 11% with propofol (p = 0.007). Sevoflurane reduced the wavelet energy of heart (p = 0.0004) and respiratory (p = 0.02) rate variability at all frequencies, whereas propofol decreased only the heart rate variability below 0.021 Hz (p < 0.05). The phase coherence was reduced by both agents at frequencies below 0.145 Hz (p < 0.05), whereas the cardiorespiratory synchronisation time was increased (p < 0.05). A classification analysis based on an optimal set of discriminatory parameters distinguished with 95% success between the awake and anaesthetised states. We suggest that these results can contribute to the design of new monitors of anaesthetic depth based on cardiovascular signals alone.
KW - Anaesthesia
KW - Nonlinear dynamics
KW - Wavelet
KW - Coherence
KW - Classification
U2 - 10.1111/anae.13208
DO - 10.1111/anae.13208
M3 - Journal article
VL - 70
SP - 1356
EP - 1368
JO - Anaesthesia
JF - Anaesthesia
SN - 0003-2409
IS - 12
ER -