Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - The inadequacy of a magnetohydrodynamic approach to the Biermann battery
T2 - Kinetic effects on the Biermann battery
AU - Ridgers, C. P.
AU - Arran, C.
AU - Bissell, J. J.
AU - Kingham, R. J.
N1 - Publisher Copyright: © 2020 The Authors.
PY - 2021/1/25
Y1 - 2021/1/25
N2 - Magnetic fields can be generated in plasmas by the Biermann battery when the electric field produced by the electron pressure gradient has a curl. The commonly employed magnetohydrodynamic (MHD) model of the Biermann battery breaks down when the electron distribution function is distorted away from Maxwellian. Using both MHD and kinetic simulations of a laser-plasma interaction relevant to inertial confinement fusion we have shown that this distortion can reduce the Biermann-producing electric field by around 50%. More importantly, the use of a flux limiter in an MHD treatment to deal with the effect of the non-Maxwellian electron distribution on electron thermal transport leads to a completely unphysical prediction of the Biermann-producing electric field and so results in erroneous predictions for the generated magnetic field. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.
AB - Magnetic fields can be generated in plasmas by the Biermann battery when the electric field produced by the electron pressure gradient has a curl. The commonly employed magnetohydrodynamic (MHD) model of the Biermann battery breaks down when the electron distribution function is distorted away from Maxwellian. Using both MHD and kinetic simulations of a laser-plasma interaction relevant to inertial confinement fusion we have shown that this distortion can reduce the Biermann-producing electric field by around 50%. More importantly, the use of a flux limiter in an MHD treatment to deal with the effect of the non-Maxwellian electron distribution on electron thermal transport leads to a completely unphysical prediction of the Biermann-producing electric field and so results in erroneous predictions for the generated magnetic field. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.
KW - high intensity laser
KW - inertial confinement fusion
KW - magnetic field
KW - plasma
U2 - 10.1098/rsta.2020.0017
DO - 10.1098/rsta.2020.0017
M3 - Journal article
C2 - 33280564
AN - SCOPUS:85097266647
VL - 379
JO - Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
JF - Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
SN - 1364-503X
IS - 2189
M1 - 20200017
ER -