Home > Research > Publications & Outputs > The influence of H2O or/and O2 introduction dur...

Electronic data

  • Nanoscale-Yanping Du

    Accepted author manuscript, 1.93 MB, PDF document

    Available under license: CC BY: Creative Commons Attribution 4.0 International License

Links

Text available via DOI:

View graph of relations

The influence of H2O or/and O2 introduction during the low-temperature gas-phase sulfation of organic COS + CS2 on the conversion and deposition of sulfur-containing species in the sulfated CeO2-OS catalyst for NH3-SCR

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

The influence of H2O or/and O2 introduction during the low-temperature gas-phase sulfation of organic COS + CS2 on the conversion and deposition of sulfur-containing species in the sulfated CeO2-OS catalyst for NH3-SCR. / Xiong, Zhibo; Zhu, Yafei; Liu, Jiaxing et al.
In: Nanoscale, No. 3, 24.01.2024, p. 1223-1237.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

Author

Bibtex

@article{6c561490d58d439bafdad407498c7f69,
title = "The influence of H2O or/and O2 introduction during the low-temperature gas-phase sulfation of organic COS + CS2 on the conversion and deposition of sulfur-containing species in the sulfated CeO2-OS catalyst for NH3-SCR",
abstract = "Herein, the typical components of blast furnace gas, including H O and O , were introduced to improve the NH -SCR activity of the sulfated CeO -OS catalyst during the gas-phase sulfation of organic COS + CS at 50 °C. The characterization results demonstrate that the introduction of O or H O during gas-phase sulfation enhances the conversion of organic COS + CS on a cubic fluorite CeO surface and reduces the formation of sulfur and sulfates in the catalyst, but decreases the BET surface area and pore volume of the sulfated CeO -OS catalyst. However, the introduction of O or H O during the gas-phase sulfation increases the molar ratios of Ce /(Ce + Ce ) and O /(O + O + O ) on the sulfated CeO -OS catalyst surface, thus promoting the formation of surface oxygen vacancies and chemisorbed oxygen, and these properties of the catalyst are further enhanced by the co-existence of O and H O. Furthermore, the reduction of sulfates formed under the action of O or H O decreases the weak acid sites of the sulfated CeO -OS catalyst, but the few and highly dispersive sulfates present stronger reducibility, and the proportion of medium-strong acid sites of the catalyst increases. These factors help to improve the NH -SCR activity of the sulfated CeO -OS catalyst. Thus, there exists a synergistic effect of H O and O introduction during gas-phase sulfation on the physical-chemical properties and catalytic performance of the sulfated CeO -OS catalyst by organic COS + CS at 50 °C.",
keywords = "General Materials Science",
author = "Zhibo Xiong and Yafei Zhu and Jiaxing Liu and Yanping Du and Fei Zhou and Jing Jin and Qiguo Yang and Wei Lu",
year = "2024",
month = jan,
day = "24",
doi = "10.1039/d3nr04686a",
language = "English",
pages = "1223--1237",
journal = "Nanoscale",
issn = "2040-3364",
publisher = "Royal Society of Chemistry",
number = "3",

}

RIS

TY - JOUR

T1 - The influence of H2O or/and O2 introduction during the low-temperature gas-phase sulfation of organic COS + CS2 on the conversion and deposition of sulfur-containing species in the sulfated CeO2-OS catalyst for NH3-SCR

AU - Xiong, Zhibo

AU - Zhu, Yafei

AU - Liu, Jiaxing

AU - Du, Yanping

AU - Zhou, Fei

AU - Jin, Jing

AU - Yang, Qiguo

AU - Lu, Wei

PY - 2024/1/24

Y1 - 2024/1/24

N2 - Herein, the typical components of blast furnace gas, including H O and O , were introduced to improve the NH -SCR activity of the sulfated CeO -OS catalyst during the gas-phase sulfation of organic COS + CS at 50 °C. The characterization results demonstrate that the introduction of O or H O during gas-phase sulfation enhances the conversion of organic COS + CS on a cubic fluorite CeO surface and reduces the formation of sulfur and sulfates in the catalyst, but decreases the BET surface area and pore volume of the sulfated CeO -OS catalyst. However, the introduction of O or H O during the gas-phase sulfation increases the molar ratios of Ce /(Ce + Ce ) and O /(O + O + O ) on the sulfated CeO -OS catalyst surface, thus promoting the formation of surface oxygen vacancies and chemisorbed oxygen, and these properties of the catalyst are further enhanced by the co-existence of O and H O. Furthermore, the reduction of sulfates formed under the action of O or H O decreases the weak acid sites of the sulfated CeO -OS catalyst, but the few and highly dispersive sulfates present stronger reducibility, and the proportion of medium-strong acid sites of the catalyst increases. These factors help to improve the NH -SCR activity of the sulfated CeO -OS catalyst. Thus, there exists a synergistic effect of H O and O introduction during gas-phase sulfation on the physical-chemical properties and catalytic performance of the sulfated CeO -OS catalyst by organic COS + CS at 50 °C.

AB - Herein, the typical components of blast furnace gas, including H O and O , were introduced to improve the NH -SCR activity of the sulfated CeO -OS catalyst during the gas-phase sulfation of organic COS + CS at 50 °C. The characterization results demonstrate that the introduction of O or H O during gas-phase sulfation enhances the conversion of organic COS + CS on a cubic fluorite CeO surface and reduces the formation of sulfur and sulfates in the catalyst, but decreases the BET surface area and pore volume of the sulfated CeO -OS catalyst. However, the introduction of O or H O during the gas-phase sulfation increases the molar ratios of Ce /(Ce + Ce ) and O /(O + O + O ) on the sulfated CeO -OS catalyst surface, thus promoting the formation of surface oxygen vacancies and chemisorbed oxygen, and these properties of the catalyst are further enhanced by the co-existence of O and H O. Furthermore, the reduction of sulfates formed under the action of O or H O decreases the weak acid sites of the sulfated CeO -OS catalyst, but the few and highly dispersive sulfates present stronger reducibility, and the proportion of medium-strong acid sites of the catalyst increases. These factors help to improve the NH -SCR activity of the sulfated CeO -OS catalyst. Thus, there exists a synergistic effect of H O and O introduction during gas-phase sulfation on the physical-chemical properties and catalytic performance of the sulfated CeO -OS catalyst by organic COS + CS at 50 °C.

KW - General Materials Science

U2 - 10.1039/d3nr04686a

DO - 10.1039/d3nr04686a

M3 - Journal article

SP - 1223

EP - 1237

JO - Nanoscale

JF - Nanoscale

SN - 2040-3364

IS - 3

ER -