Home > Research > Publications & Outputs > The KMOS Cluster Survey (KCS) I

Electronic data

  • 1708.00454v1

    Rights statement: This is an author-created, un-copyedited version of an article accepted for publication/published in The Astrophysical Journal. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at doi: 10.3847/1538-4357/aa8368

    Accepted author manuscript, 3.03 MB, PDF document

    Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License

Links

Text available via DOI:

View graph of relations

The KMOS Cluster Survey (KCS) I: The fundamental plane and the formation ages of cluster galaxies at redshift $1.4z1.6$

Research output: Contribution to journalJournal articlepeer-review

Published
  • Alessandra Beifiori
  • J. Trevor Mendel
  • Jeffrey C. C. Chan
  • Roberto P. Saglia
  • Ralf Bender
  • Michele Cappellari
  • Roger L. Davies
  • Audrey Galametz
  • Ryan C. W. Houghton
  • Laura J. Prichard
  • Russel Smith
  • John P. Stott
  • David J. Wilman
  • Ian J. Lewis
  • Ray Sharples
  • Michael Wegner
Close
Article number120
<mark>Journal publication date</mark>10/09/2017
<mark>Journal</mark>The Astrophysical Journal
Issue number2
Volume846
Number of pages25
Publication StatusPublished
Early online date8/09/17
<mark>Original language</mark>English

Abstract

We present the analysis of the fundamental plane (FP) for a sample of 19 massive red-sequence galaxies ($M_{\star} >4\times10^{10} M_{\odot}$) in 3 known overdensities at $1.39z 11$) in our sample, we translate the FP zero-point evolution into a mass-to-light-ratio $M/L$ evolution finding $\Delta \log M/L_{B}=(-0.46\pm0.10)z$, $\Delta \log M/L_{B}=(-0.52\pm0.07)z$, to $\Delta \log M/L_{B}=(-0.55\pm0.10)z$, respectively. We assess the potential contribution of the galaxies structural and stellar velocity dispersion evolution to the evolution of the FP zero-point and find it to be $\sim$6-35 % of the FP zero-point evolution. The rate of $M/L$ evolution is consistent with galaxies evolving passively. By using single stellar population models, we find an average age of $2.33^{+0.86}_{-0.51}$ Gyr for the $\log M_{\star}/M_{\odot}>11$ galaxies in our massive and virialized cluster at $z=1.39$, $1.59^{+1.40}_{-0.62}$ Gyr in a massive but not virialized cluster at $z=1.46$, and $1.20^{+1.03}_{-0.47}$ Gyr in a protocluster at $z=1.61$. After accounting for the difference in the age of the Universe between redshifts, the ages of the galaxies in the three overdensities are consistent within the errors, with possibly a weak suggestion that galaxies in the most evolved structure are older.

Bibliographic note

This is an author-created, un-copyedited version of an article accepted for publication/published in The Astrophysical Journal. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at doi: 10.3847/1538-4357/aa8368