Accepted author manuscript, 20.9 MB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - The Radio Galaxy Environment Reference Survey (RAGERS)
T2 - a submillimetre study of the environments of massive radio-quiet galaxies at z = 1–3
AU - Cornish, Thomas
AU - Wardlow, Julie
AU - Greve, T. R.
AU - Chapman, Scott C.
AU - Chen, Chian-Chou
AU - Dannerbauer, H.
AU - Goto, Tomotsugu
AU - Gullberg, Bitten
AU - Ho, Luis
AU - Jiang, Xue-Jian
AU - Lagos, Claudia
AU - Minju, Lee
AU - Serjeant, Stephen
AU - Shim, Hyunjin
AU - Smith, Daniel J B
AU - Vijayan, Aswin
AU - Wagg, Jeff
AU - Zhou, Dazhi
PY - 2024/9/30
Y1 - 2024/9/30
N2 - Measuring the environments of massive galaxies at high redshift is crucial to understanding galaxy evolution and the conditions that gave rise to the distribution of matter we see in the Universe today. While high-z radio galaxies (HzRGs) and quasars tend to reside in protocluster-like systems, the environments of their radio-quiet counterparts are relatively unexplored, particularly in the submillimetre, which traces dust-obscured star formation. In this study we search for 850 μm-selected submillimetre galaxies in the environments of massive (M⋆>1011M⊙), radio-quiet (L500MHz≲1025 W Hz−1) galaxies at z∼1--3 using S2COSMOS data. By constructing number counts in circular regions of radius 1--6 arcmin and comparing with blank-field measurements, we find no significant overdensities of SMGs around massive radio-quiet galaxies at any of these scales, despite being sensitive down to overdensities of δ∼0.4. To probe deeper than the catalogue we also examine the distribution of peaks in the SCUBA-2 SNR map, which reveals only tentative signs of any difference in the SMG densities of the radio-quiet galaxy environments compared to the blank field, and only on smaller scales (1′ radii, corresponding to ∼0.5 Mpc) and higher SNR thresholds. We conclude that massive, radio-quiet galaxies at cosmic noon are typically in environments with δ≲0.4, which are either consistent with the blank field or contain only weak overdensities spanning sub-Mpc scales. The contrast between our results and studies of HzRGs with similar stellar masses and redshifts implies an intrinsic link between the wide-field environment and radio AGN luminosity at high redshift.
AB - Measuring the environments of massive galaxies at high redshift is crucial to understanding galaxy evolution and the conditions that gave rise to the distribution of matter we see in the Universe today. While high-z radio galaxies (HzRGs) and quasars tend to reside in protocluster-like systems, the environments of their radio-quiet counterparts are relatively unexplored, particularly in the submillimetre, which traces dust-obscured star formation. In this study we search for 850 μm-selected submillimetre galaxies in the environments of massive (M⋆>1011M⊙), radio-quiet (L500MHz≲1025 W Hz−1) galaxies at z∼1--3 using S2COSMOS data. By constructing number counts in circular regions of radius 1--6 arcmin and comparing with blank-field measurements, we find no significant overdensities of SMGs around massive radio-quiet galaxies at any of these scales, despite being sensitive down to overdensities of δ∼0.4. To probe deeper than the catalogue we also examine the distribution of peaks in the SCUBA-2 SNR map, which reveals only tentative signs of any difference in the SMG densities of the radio-quiet galaxy environments compared to the blank field, and only on smaller scales (1′ radii, corresponding to ∼0.5 Mpc) and higher SNR thresholds. We conclude that massive, radio-quiet galaxies at cosmic noon are typically in environments with δ≲0.4, which are either consistent with the blank field or contain only weak overdensities spanning sub-Mpc scales. The contrast between our results and studies of HzRGs with similar stellar masses and redshifts implies an intrinsic link between the wide-field environment and radio AGN luminosity at high redshift.
U2 - 10.1093/mnras/stae1861
DO - 10.1093/mnras/stae1861
M3 - Journal article
VL - 533
SP - 1032
EP - 1044
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
SN - 0035-8711
IS - 1
ER -