Home > Research > Publications & Outputs > The rigidity of countable frameworks in normed ...

Associated organisational unit

Electronic data

  • 2019dewarphd

    Final published version, 1.55 MB, PDF document

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Text available via DOI:

View graph of relations

The rigidity of countable frameworks in normed spaces

Research output: ThesisDoctoral Thesis

Published

Standard

The rigidity of countable frameworks in normed spaces. / Dewar, Sean.
Lancaster University, 2019. 243 p.

Research output: ThesisDoctoral Thesis

Harvard

APA

Dewar, S. (2019). The rigidity of countable frameworks in normed spaces. [Doctoral Thesis, Lancaster University]. Lancaster University. https://doi.org/10.17635/lancaster/thesis/756

Vancouver

Dewar S. The rigidity of countable frameworks in normed spaces. Lancaster University, 2019. 243 p. doi: 10.17635/lancaster/thesis/756

Author

Bibtex

@phdthesis{d0021c40f0024a0da571c207026970f1,
title = "The rigidity of countable frameworks in normed spaces",
abstract = "We present a rigorous study of framework rigidity in finite dimensional normed spaces using a wide array of tools to attack these problems, including differential and discrete geometry, matroid theory, convex analysis and graph theory. We shall first focus on giving a good grounding of the area of rigidity theory from a more general view point to allow us to deal with a variety of normed spaces. By observing orbits of placements from the perspective of Lie group actions on smooth manifolds, we obtain upper bounds for the dimension of the space of trivial motions for a framework.Utilising aspects of differential geometry, we prove an extension of Asimow andRoth{\textquoteright}s 1978/9 result establishing the equivalence of local, continuous and infinitesimal rigidity for regular bar-and-joint frameworks in a d-dimensional Euclidean space. Further, we establish the independence of all graphs with d + 1 vertices d-dimensional normed space, and also prove they will be flexible if the normed space is non-Euclidean.Next, we prove that a graph has an infinitesimally rigid placement in a nonEuclidean normed plane if and only if it contains a (2, 2)-tight spanning subgraph. The method uses an inductive construction based on generalised Henneberg moves and the geometric properties of the normed plane. As a key step, rigid placements are constructed for the complete graph K4 by considering smoothness and strict convexity properties of the unit ball.Finally, we carry our previous results to countably infinite frameworks where thisis possible, and otherwise identify when such results cannot be brought forward. We first establish matroidal methods for identifying rigidity and flexibility, and apply these methods to a large class of normed spaces. We characterise a necessary and sufficient condition for countably infinite graphs to have sequentially infinitesimally rigid placements in a general normed plane, and further stengthen the result for a large class normed planes. Finally, we prove that infinitesimal rigidity for countably infinite generic frameworks implies a weaker (but possibly equivalent) form of continuous rigidity, and infinitesimal rigidity for countably infinite algebraically generic frameworks impliescontinuous rigidity.",
author = "Sean Dewar",
year = "2019",
doi = "10.17635/lancaster/thesis/756",
language = "English",
publisher = "Lancaster University",
school = "Lancaster University",

}

RIS

TY - BOOK

T1 - The rigidity of countable frameworks in normed spaces

AU - Dewar, Sean

PY - 2019

Y1 - 2019

N2 - We present a rigorous study of framework rigidity in finite dimensional normed spaces using a wide array of tools to attack these problems, including differential and discrete geometry, matroid theory, convex analysis and graph theory. We shall first focus on giving a good grounding of the area of rigidity theory from a more general view point to allow us to deal with a variety of normed spaces. By observing orbits of placements from the perspective of Lie group actions on smooth manifolds, we obtain upper bounds for the dimension of the space of trivial motions for a framework.Utilising aspects of differential geometry, we prove an extension of Asimow andRoth’s 1978/9 result establishing the equivalence of local, continuous and infinitesimal rigidity for regular bar-and-joint frameworks in a d-dimensional Euclidean space. Further, we establish the independence of all graphs with d + 1 vertices d-dimensional normed space, and also prove they will be flexible if the normed space is non-Euclidean.Next, we prove that a graph has an infinitesimally rigid placement in a nonEuclidean normed plane if and only if it contains a (2, 2)-tight spanning subgraph. The method uses an inductive construction based on generalised Henneberg moves and the geometric properties of the normed plane. As a key step, rigid placements are constructed for the complete graph K4 by considering smoothness and strict convexity properties of the unit ball.Finally, we carry our previous results to countably infinite frameworks where thisis possible, and otherwise identify when such results cannot be brought forward. We first establish matroidal methods for identifying rigidity and flexibility, and apply these methods to a large class of normed spaces. We characterise a necessary and sufficient condition for countably infinite graphs to have sequentially infinitesimally rigid placements in a general normed plane, and further stengthen the result for a large class normed planes. Finally, we prove that infinitesimal rigidity for countably infinite generic frameworks implies a weaker (but possibly equivalent) form of continuous rigidity, and infinitesimal rigidity for countably infinite algebraically generic frameworks impliescontinuous rigidity.

AB - We present a rigorous study of framework rigidity in finite dimensional normed spaces using a wide array of tools to attack these problems, including differential and discrete geometry, matroid theory, convex analysis and graph theory. We shall first focus on giving a good grounding of the area of rigidity theory from a more general view point to allow us to deal with a variety of normed spaces. By observing orbits of placements from the perspective of Lie group actions on smooth manifolds, we obtain upper bounds for the dimension of the space of trivial motions for a framework.Utilising aspects of differential geometry, we prove an extension of Asimow andRoth’s 1978/9 result establishing the equivalence of local, continuous and infinitesimal rigidity for regular bar-and-joint frameworks in a d-dimensional Euclidean space. Further, we establish the independence of all graphs with d + 1 vertices d-dimensional normed space, and also prove they will be flexible if the normed space is non-Euclidean.Next, we prove that a graph has an infinitesimally rigid placement in a nonEuclidean normed plane if and only if it contains a (2, 2)-tight spanning subgraph. The method uses an inductive construction based on generalised Henneberg moves and the geometric properties of the normed plane. As a key step, rigid placements are constructed for the complete graph K4 by considering smoothness and strict convexity properties of the unit ball.Finally, we carry our previous results to countably infinite frameworks where thisis possible, and otherwise identify when such results cannot be brought forward. We first establish matroidal methods for identifying rigidity and flexibility, and apply these methods to a large class of normed spaces. We characterise a necessary and sufficient condition for countably infinite graphs to have sequentially infinitesimally rigid placements in a general normed plane, and further stengthen the result for a large class normed planes. Finally, we prove that infinitesimal rigidity for countably infinite generic frameworks implies a weaker (but possibly equivalent) form of continuous rigidity, and infinitesimal rigidity for countably infinite algebraically generic frameworks impliescontinuous rigidity.

U2 - 10.17635/lancaster/thesis/756

DO - 10.17635/lancaster/thesis/756

M3 - Doctoral Thesis

PB - Lancaster University

ER -