Home > Research > Publications & Outputs > The vegetation history of an Amazonian domed pe...

Electronic data

  • 1-s2.0-S0031018216307829-main

    Rights statement: This is the author’s version of a work that was accepted for publication in Palaeogeography, Palaeoclimatology, Palaeoecology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Palaeogeography, Palaeoclimatology, Palaeoecology, 468, 2017 DOI: 10.1016/j.palaeo.2016.11.039

    Accepted author manuscript, 1.63 MB, PDF document

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Links

Text available via DOI:

View graph of relations

The vegetation history of an Amazonian domed peatland

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
  • Thomas J. Kelly
  • Ian T. Lawson
  • Katherine H. Roucoux
  • Timothy R. Baker
  • Timothy D. Jones
  • Nicole K. Sanderson
Close
<mark>Journal publication date</mark>15/02/2017
<mark>Journal</mark>Palaeogeography, Palaeoclimatology, Palaeoecology
Volume468
Number of pages13
Pages (from-to)129-141
Publication StatusPublished
Early online date28/11/16
<mark>Original language</mark>English

Abstract

Abstract The peatland pole forests of the Pastaza-Marañón Foreland Basin (PMFB), Peru, are the most carbon-dense ecosystems known in Amazonia once below ground carbon stores are taken into account. Here we present the first multiproxy palaeoenvironmental record including pollen data from one of these peatlands, San Jorge in northern Peru, supported by an age model based on radiocarbon and 210Pb dating. The pollen data indicate that vegetation changes during the early phases of peat initiation resulted from autogenic succession in combination with fluvial influence. The overall pattern of vegetation change is not straightforward: the record does not reflect a process of unidirectional, progressive terrestrialization, but includes a reversal in the succession and vegetation transitions, which omit predicted successional phases. This complexity is similar to that seen in the only other existing pollen record from a PMFB peatland, at Quistococha, but contrasts with peat records from Panama and Southeast Asia where successional patterning appears more predictable. Our dating results provide the first evidence from a PMFB peatland that peat accumulation may have been discontinuous, with evidence for reduced rates of peat accumulation, or a possible hiatus, around 1300–400 cal yr BP. An ecological shift from open lake to palm swamp occurs at this time, possibly driven by climatic change. The pollen data indicate that the present pole forest vegetation at San Jorge began to assemble c. 200–150 cal yr BP. Given this young age, it is likely that the pole forest at this site remains in a state of transition.

Bibliographic note

This is the author’s version of a work that was accepted for publication in Palaeogeography, Palaeoclimatology, Palaeoecology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Palaeogeography, Palaeoclimatology, Palaeoecology, 468, 2017 DOI: 10.1016/j.palaeo.2016.11.039