Home > Research > Publications & Outputs > Theory of Quantum Transport in Nano and Molecul...

Associated organisational unit

Electronic data

  • 2021AlwhaibiPhD

    Final published version, 3.54 MB, PDF document

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Text available via DOI:

View graph of relations

Theory of Quantum Transport in Nano and Molecular Scale Systems

Research output: ThesisDoctoral Thesis

Published

Standard

Theory of Quantum Transport in Nano and Molecular Scale Systems. / Alwhaibi, Noorah.
Lancaster University, 2021. 119 p.

Research output: ThesisDoctoral Thesis

Harvard

APA

Vancouver

Alwhaibi N. Theory of Quantum Transport in Nano and Molecular Scale Systems. Lancaster University, 2021. 119 p. doi: 10.17635/lancaster/thesis/1506

Author

Bibtex

@phdthesis{a9840988769f423f99b996932a4853de,
title = "Theory of Quantum Transport in Nano and Molecular Scale Systems",
abstract = "This thesis investigates the fundamental aspects of the molecular-scale junctions and their electrical properties. Experimental and theoretical studies assessed the importance of finding ways to get consistent and reproducible improvements in electronics devices fabrications techniques. In this context, I will start this thesis by introducing a general discussion about using the density functional theory (DFT), and Green's function to study transport calculations at a molecular scale. Then, I will present the theoretical and experimental benzo-(bis)imiadzol molecular studies in chapter 4. This study focusses on changes in the conductance as a consequence of chemical stimuli. I will demonstrate that benzo-bis(imidazole) conductance switching upon protonation depends on the lateral functional groups. The protonated H-substituted molecule shows a higher conductance than the neutral one (Gpro>Gneu), while the opposite (Gneu>Gpro) is observed for a molecule functionalized by amino-phenyl groups. Based on theoretical calculations, I conclude that these opposite behaviours depend on the electronic coupling between molecules and electrodes. Furthermore, quantum interference properties have recently attracted excessive interest in electron transport studies at the single-molecule scale. Within this framework, myself and collaborators have aimed to improve the efficiency of pi-stacked molecules in controlling quantum interference by carefully designing them. Chapter 5 introduces a novel strategy for designing folded carbazoles with low conductance in different structures. This strategy highlights the presence or absence of destructive quantum interference in different configurations. This project is part of a collaborations with the experimental group at the University of Madrid, which is ongoing at present.",
keywords = "Transport, Electronic, nanoelectronics, conductance",
author = "Noorah Alwhaibi",
year = "2021",
doi = "10.17635/lancaster/thesis/1506",
language = "English",
publisher = "Lancaster University",
school = "Lancaster University",

}

RIS

TY - BOOK

T1 - Theory of Quantum Transport in Nano and Molecular Scale Systems

AU - Alwhaibi, Noorah

PY - 2021

Y1 - 2021

N2 - This thesis investigates the fundamental aspects of the molecular-scale junctions and their electrical properties. Experimental and theoretical studies assessed the importance of finding ways to get consistent and reproducible improvements in electronics devices fabrications techniques. In this context, I will start this thesis by introducing a general discussion about using the density functional theory (DFT), and Green's function to study transport calculations at a molecular scale. Then, I will present the theoretical and experimental benzo-(bis)imiadzol molecular studies in chapter 4. This study focusses on changes in the conductance as a consequence of chemical stimuli. I will demonstrate that benzo-bis(imidazole) conductance switching upon protonation depends on the lateral functional groups. The protonated H-substituted molecule shows a higher conductance than the neutral one (Gpro>Gneu), while the opposite (Gneu>Gpro) is observed for a molecule functionalized by amino-phenyl groups. Based on theoretical calculations, I conclude that these opposite behaviours depend on the electronic coupling between molecules and electrodes. Furthermore, quantum interference properties have recently attracted excessive interest in electron transport studies at the single-molecule scale. Within this framework, myself and collaborators have aimed to improve the efficiency of pi-stacked molecules in controlling quantum interference by carefully designing them. Chapter 5 introduces a novel strategy for designing folded carbazoles with low conductance in different structures. This strategy highlights the presence or absence of destructive quantum interference in different configurations. This project is part of a collaborations with the experimental group at the University of Madrid, which is ongoing at present.

AB - This thesis investigates the fundamental aspects of the molecular-scale junctions and their electrical properties. Experimental and theoretical studies assessed the importance of finding ways to get consistent and reproducible improvements in electronics devices fabrications techniques. In this context, I will start this thesis by introducing a general discussion about using the density functional theory (DFT), and Green's function to study transport calculations at a molecular scale. Then, I will present the theoretical and experimental benzo-(bis)imiadzol molecular studies in chapter 4. This study focusses on changes in the conductance as a consequence of chemical stimuli. I will demonstrate that benzo-bis(imidazole) conductance switching upon protonation depends on the lateral functional groups. The protonated H-substituted molecule shows a higher conductance than the neutral one (Gpro>Gneu), while the opposite (Gneu>Gpro) is observed for a molecule functionalized by amino-phenyl groups. Based on theoretical calculations, I conclude that these opposite behaviours depend on the electronic coupling between molecules and electrodes. Furthermore, quantum interference properties have recently attracted excessive interest in electron transport studies at the single-molecule scale. Within this framework, myself and collaborators have aimed to improve the efficiency of pi-stacked molecules in controlling quantum interference by carefully designing them. Chapter 5 introduces a novel strategy for designing folded carbazoles with low conductance in different structures. This strategy highlights the presence or absence of destructive quantum interference in different configurations. This project is part of a collaborations with the experimental group at the University of Madrid, which is ongoing at present.

KW - Transport

KW - Electronic

KW - nanoelectronics

KW - conductance

U2 - 10.17635/lancaster/thesis/1506

DO - 10.17635/lancaster/thesis/1506

M3 - Doctoral Thesis

PB - Lancaster University

ER -