Home > Research > Publications & Outputs > Toggling bistable atoms via mechanical switchin...

Links

Text available via DOI:

View graph of relations

Toggling bistable atoms via mechanical switching of bond angle

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Toggling bistable atoms via mechanical switching of bond angle. / Sweetman, Adam; Jarvis, Samuel; Danza, Rosanna et al.
In: Physical review letters, Vol. 106, No. 13, 136101, 28.03.2011.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Sweetman, A, Jarvis, S, Danza, R, Bamidele, J, Gangopadhyay, S, Shaw, GA, Kantorovich, L & Moriarty, P 2011, 'Toggling bistable atoms via mechanical switching of bond angle', Physical review letters, vol. 106, no. 13, 136101. https://doi.org/10.1103/PhysRevLett.106.136101

APA

Sweetman, A., Jarvis, S., Danza, R., Bamidele, J., Gangopadhyay, S., Shaw, G. A., Kantorovich, L., & Moriarty, P. (2011). Toggling bistable atoms via mechanical switching of bond angle. Physical review letters, 106(13), Article 136101. https://doi.org/10.1103/PhysRevLett.106.136101

Vancouver

Sweetman A, Jarvis S, Danza R, Bamidele J, Gangopadhyay S, Shaw GA et al. Toggling bistable atoms via mechanical switching of bond angle. Physical review letters. 2011 Mar 28;106(13):136101. doi: 10.1103/PhysRevLett.106.136101

Author

Sweetman, Adam ; Jarvis, Samuel ; Danza, Rosanna et al. / Toggling bistable atoms via mechanical switching of bond angle. In: Physical review letters. 2011 ; Vol. 106, No. 13.

Bibtex

@article{34d7284dc4bf422b90c99f2917e2c5ab,
title = "Toggling bistable atoms via mechanical switching of bond angle",
abstract = "We reversibly switch the state of a bistable atom by direct mechanical manipulation of bond angle using a dynamic force microscope. Individual buckled dimers at the Si(100) surface are flipped via the formation of a single covalent bond, actuating the smallest conceivable in-plane toggle switch (two atoms) via chemical force alone. The response of a given dimer to a flip event depends critically on both the local and nonlocal environment of the target atom-an important consideration for future atomic scale fabrication strategies.",
keywords = "FORCE MICROSCOPY, SILICON, SURFACE, SI(001), DIMERS, MANIPULATION, MOLECULES, DYNAMICS, TIP",
author = "Adam Sweetman and Samuel Jarvis and Rosanna Danza and Joseph Bamidele and Subhashis Gangopadhyay and Shaw, {Gordon A.} and Lev Kantorovich and Philip Moriarty",
year = "2011",
month = mar,
day = "28",
doi = "10.1103/PhysRevLett.106.136101",
language = "English",
volume = "106",
journal = "Physical review letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "13",

}

RIS

TY - JOUR

T1 - Toggling bistable atoms via mechanical switching of bond angle

AU - Sweetman, Adam

AU - Jarvis, Samuel

AU - Danza, Rosanna

AU - Bamidele, Joseph

AU - Gangopadhyay, Subhashis

AU - Shaw, Gordon A.

AU - Kantorovich, Lev

AU - Moriarty, Philip

PY - 2011/3/28

Y1 - 2011/3/28

N2 - We reversibly switch the state of a bistable atom by direct mechanical manipulation of bond angle using a dynamic force microscope. Individual buckled dimers at the Si(100) surface are flipped via the formation of a single covalent bond, actuating the smallest conceivable in-plane toggle switch (two atoms) via chemical force alone. The response of a given dimer to a flip event depends critically on both the local and nonlocal environment of the target atom-an important consideration for future atomic scale fabrication strategies.

AB - We reversibly switch the state of a bistable atom by direct mechanical manipulation of bond angle using a dynamic force microscope. Individual buckled dimers at the Si(100) surface are flipped via the formation of a single covalent bond, actuating the smallest conceivable in-plane toggle switch (two atoms) via chemical force alone. The response of a given dimer to a flip event depends critically on both the local and nonlocal environment of the target atom-an important consideration for future atomic scale fabrication strategies.

KW - FORCE MICROSCOPY

KW - SILICON

KW - SURFACE

KW - SI(001)

KW - DIMERS

KW - MANIPULATION

KW - MOLECULES

KW - DYNAMICS

KW - TIP

U2 - 10.1103/PhysRevLett.106.136101

DO - 10.1103/PhysRevLett.106.136101

M3 - Journal article

VL - 106

JO - Physical review letters

JF - Physical review letters

SN - 0031-9007

IS - 13

M1 - 136101

ER -