Home > Research > Publications & Outputs > Topological transition in measurement-induced g...

Electronic data

  • 1905.01147

    Rights statement: Copyright © 2020 National Academy of Sciences

    Accepted author manuscript, 1.21 MB, PDF document

    Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License


Text available via DOI:

View graph of relations

Topological transition in measurement-induced geometric phases

Research output: Contribution to Journal/MagazineJournal articlepeer-review

  • V. Gebhart
  • K. Snizhko
  • T. Wellens
  • A. Buchleitner
  • A. Romito
  • Y. Gefen
<mark>Journal publication date</mark>17/03/2020
<mark>Journal</mark>Proceedings of the National Academy of Sciences of the United States of America
Issue number11
Number of pages8
Pages (from-to)5706-5713
Publication StatusPublished
Early online date2/03/20
<mark>Original language</mark>English


The state of a quantum system, adiabatically driven in a cycle, may acquire a measurable phase depending only on the closed trajectory in parameter space. Such geometric phases are ubiquitous and also underline the physics of robust topological phenomena such as the quantum Hall effect. Equivalently, a geometric phase may be induced through a cyclic sequence of quantum measurements. We show that the application of a sequence of weak measurements renders the closed trajectories, hence the geometric phase, stochastic. We study the concomitant probability distribution and show that, when varying the measurement strength, the mapping between the measurement sequence and the geometric phase undergoes a topological transition. Our finding may impact measurement-induced control and manipulation of quantum states-a promising approach to quantum information processing. It also has repercussions on understanding the foundations of quantum measurement.

Bibliographic note

Copyright © 2020 National Academy of Sciences