Home > Research > Publications & Outputs > Towards GaAs Thin-Film Tracking Detectors


Text available via DOI:

View graph of relations

Towards GaAs Thin-Film Tracking Detectors

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Article numberP09012
<mark>Journal publication date</mark>14/09/2021
<mark>Journal</mark>Journal of Instrumentation
Number of pages16
Publication StatusPublished
<mark>Original language</mark>English


Silicon-based tracking detectors have been used in several important applications, such as in cancer therapy using particle beams, and for the discovery of new elementary particles at the Large Hadron Collider at CERN. III-V semiconductor materials are an attractive alternative to silicon for this application, as they have some superior physical properties. They could meet the demands for fast timing detectors allowing time-of-flight measurements with ps resolution while being radiation tolerant and cost-efficient. As a material with a larger density, higher atomic number Z and much higher electron mobility than silicon, GaAs exhibits faster signal collection and a larger signal per {\mu}m of sensor thickness. In this work, we report on the fabrication of n-in-n GaAs thin-film devices intended to serve next-generation high-energy particle tracking detectors. Molecular beam epitaxy (MBE) was used to grow high-quality GaAs films with doping levels sufficiently low to achieve full depletion for detectors with an active thickness of 10 {\mu}m. The signal collection speed of the detector structures was assessed using the transient current technique (TCT). To elucidate the structural properties of the detector, Kelvin probe force microscopy (KPFM) was used, which confirmed the formation of the junction in the detector and revealed residual doping in the intrinsic layer. Our results suggest that GaAs thin films are suitable candidates to achieve thin and radiation-tolerant tracking detectors.