Rights statement: This is the author’s version of a work that was accepted for publication in Acta Biomaterialia. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Acta Biomaterialia, 139, 2022 DOI: 10.1016/j.actbio.2021.07.065
Accepted author manuscript, 1.62 MB, PDF document
Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Literature review › peer-review
Research output: Contribution to Journal/Magazine › Literature review › peer-review
}
TY - JOUR
T1 - Towards the Translation of Electroconductive Organic Materials for Regeneration of Neural Tissues
AU - Manousiouthakis, Eleana
AU - Park, Junggeon
AU - Hardy, John
AU - Lee, Jae
AU - Schmidt, Christine
N1 - This is the author’s version of a work that was accepted for publication in Acta Biomaterialia. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Acta Biomaterialia, 139, 2022 DOI: 10.1016/j.actbio.2021.07.065
PY - 2022/2/28
Y1 - 2022/2/28
N2 - Carbon-based conductive and electroactive materials (e.g., derivatives of graphene, fullerenes, polypyrrole, polythiophene, polyaniline) have been studied since the 1970s for use in a broad range of applications. These materials have electrical properties comparable to those of commonly used metals, while providing other benefits such as flexibility in processing and modification with biologics (e.g., cells, biomolecules), to yield electroactive materials with biomimetic mechanical and chemical properties. In this review, we focus on the uses of these electroconductive materials in the context of the central and peripheral nervous system, specifically recent studies in the peripheral nerve, spinal cord, brain, eye, and ear. We also highlight in vivo studies and clinical trials, as well as a snapshot of emerging classes of electroconductive materials (e.g., biodegradable materials). We believe such specialized electrically conductive biomaterials will clinically impact the field of tissue regeneration in the foreseeable future.
AB - Carbon-based conductive and electroactive materials (e.g., derivatives of graphene, fullerenes, polypyrrole, polythiophene, polyaniline) have been studied since the 1970s for use in a broad range of applications. These materials have electrical properties comparable to those of commonly used metals, while providing other benefits such as flexibility in processing and modification with biologics (e.g., cells, biomolecules), to yield electroactive materials with biomimetic mechanical and chemical properties. In this review, we focus on the uses of these electroconductive materials in the context of the central and peripheral nervous system, specifically recent studies in the peripheral nerve, spinal cord, brain, eye, and ear. We also highlight in vivo studies and clinical trials, as well as a snapshot of emerging classes of electroconductive materials (e.g., biodegradable materials). We believe such specialized electrically conductive biomaterials will clinically impact the field of tissue regeneration in the foreseeable future.
KW - bioelectronics
U2 - 10.1016/j.actbio.2021.07.065
DO - 10.1016/j.actbio.2021.07.065
M3 - Literature review
VL - 139
SP - 22
EP - 42
JO - Acta Biomaterialia
JF - Acta Biomaterialia
SN - 1742-7061
ER -