Home > Research > Publications & Outputs > Ultra-red Galaxies Signpost Candidate Protoclus...

Electronic data

  • 1711.08803

    Accepted author manuscript, 2.8 MB, PDF document

    Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License

  • Lewis_2018_ApJ_862_96

    Final published version, 10.1 MB, PDF document

    Available under license: Unspecified


Text available via DOI:

View graph of relations

Ultra-red Galaxies Signpost Candidate Protoclusters at High Redshift

Research output: Contribution to Journal/MagazineJournal articlepeer-review

  • A. J. R. Lewis
  • R. J. Ivison
  • P. N. Best
  • J. M. Simpson
  • A. Weiss
  • I. Oteo
  • Z.-Y. Zhang
  • V. Arumugam
  • M. N. Bremer
  • S. C. Chapman
  • D. L. Clements
  • H. Dannerbauer
  • L. Dunne
  • S. Eales
  • S. Maddox
  • S. J. Oliver
  • A. Omont
  • D. A. Riechers
  • S. Serjeant
  • E. Valiante
  • P. van der Werf
  • G. De Zotti
Article number96
<mark>Journal publication date</mark>1/08/2018
<mark>Journal</mark>The Astrophysical Journal
Issue number2
Number of pages23
Publication StatusPublished
Early online date26/07/18
<mark>Original language</mark>English


We present images obtained with LABOCA of a sample of 22 galaxies selected via their red Herschel SPIRE colors. We aim to see if these luminous, rare, and distant galaxies are signposting dense regions in the early universe. Our 870 μm survey covers an area of ≈1 deg2 down to an average rms of 3.9 {mJy} {beam}}-1, with our five deepest maps going ≈2× deeper still. We catalog 86 dusty star-forming galaxies (DSFGs) around our “signposts,” detected above a significance of 3.5σ. This implies a {100}-30+30 % overdensity of {S}870> 8.5 {mJy} (or {L}FIR}=6.7× {10}12{--}2.9× {10}13 {L}⊙ ) DSFGs, excluding our signposts, when comparing our number counts to those in “blank fields.” Thus, we are 99.93% confident that our signposts are pinpointing overdense regions in the universe, and ≈95% [50%] confident that these regions are overdense by a factor of at least ≥1.5 × [2×]. Using template spectral energy distributions (SEDs) and SPIRE/LABOCA photometry, we derive a median photometric redshift of z = 3.2 ± 0.2 for our signposts, with an inter-quartile range of z = 2.8-3.6, somewhat higher than expected for ˜850 μm selected galaxies. We constrain the DSFGs that are likely responsible for this overdensity to within | {{Δ }}z| ≤slant 0.65 of their respective signposts. These “associated” DSFGs are radially distributed within (physical) distances of 1.6 ± 0.5 Mpc from their signposts, have median star formation rates (SFRs) of ≈ (1.0+/- 0.2)× {10}3 {M}⊙ {yr}}-1 (for a Salpeter stellar inital mass function) and median gas reservoirs of ˜ 1.7× {10}11 {M}⊙ . These candidate protoclusters have average total SFRs of at least ≈ (2.3+/- 0.5)× {10}3 {M}⊙ {yr}}-1 and space densities of ˜9 × 10-7 Mpc-3, consistent with the idea that their constituents may evolve to become massive early-type galaxies in the centers of the rich galaxy clusters we see today.