Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Unidirectional absorption, storage, and emission of single photons in a collectively responding bilayer atomic array
AU - Ballantine, Kyle
AU - Ruostekoski, Janne
PY - 2022/9/12
Y1 - 2022/9/12
N2 - Two-dimensional regular arrays of atoms are a promising platform for quantum networks, with collective subradiant states providing long-lived storage and collimated emission allowing for natural coherent links between arrays in free space. However, a single-layer lattice can only efficiently absorb or emit light symmetrically in the forward and backward directions. Here we show how a bilayer lattice can absorb a single photon either incident from a single direction or an arbitrary superposition of forward and backward propagating components. The excitation can be stored in a subradiant state, transferred coherently between different subradiant states, and released, again in an arbitrary combination of highly collimated forward and backward propagating components. We explain the directionality of single and bilayer arrays by a symmetry analysis based on the scattering parities of different multipole radiation components of collective excitations. The collective modes may exhibit the conventional half-wave loss of fields near the array interface or completely eliminate it. The proposed directional control of absorption and emission paves the way for effective one-dimensional quantum communication between multiple arrays, with single-photons propagating backward and forward between quantum information-processing and storage stages.
AB - Two-dimensional regular arrays of atoms are a promising platform for quantum networks, with collective subradiant states providing long-lived storage and collimated emission allowing for natural coherent links between arrays in free space. However, a single-layer lattice can only efficiently absorb or emit light symmetrically in the forward and backward directions. Here we show how a bilayer lattice can absorb a single photon either incident from a single direction or an arbitrary superposition of forward and backward propagating components. The excitation can be stored in a subradiant state, transferred coherently between different subradiant states, and released, again in an arbitrary combination of highly collimated forward and backward propagating components. We explain the directionality of single and bilayer arrays by a symmetry analysis based on the scattering parities of different multipole radiation components of collective excitations. The collective modes may exhibit the conventional half-wave loss of fields near the array interface or completely eliminate it. The proposed directional control of absorption and emission paves the way for effective one-dimensional quantum communication between multiple arrays, with single-photons propagating backward and forward between quantum information-processing and storage stages.
U2 - 10.1103/PhysRevResearch.4.033200
DO - 10.1103/PhysRevResearch.4.033200
M3 - Journal article
VL - 4
JO - Physical Review Research
JF - Physical Review Research
SN - 2643-1564
IS - 3
M1 - 033200
ER -