Final published version, 497 KB, PDF document
Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Universality for random permutations and some other groups
AU - Kammoun, Mohamed Slim
PY - 2020/12/10
Y1 - 2020/12/10
N2 - We present some Markovian approaches to prove universality results for some functions on the symmetric group. Some of those statistics are already studied in [Kammoun, 2018, 2020] but not the general case. We prove, in particular, that the number of occurrences of a vincular patterns satisfies a CLT for conjugation invariant random permutations with few cycles and we improve the results already known for the longest increasing subsequence. The second approach is a suggestion of a generalization to other random permutations and other sets having a similar structure than the symmetric group.
AB - We present some Markovian approaches to prove universality results for some functions on the symmetric group. Some of those statistics are already studied in [Kammoun, 2018, 2020] but not the general case. We prove, in particular, that the number of occurrences of a vincular patterns satisfies a CLT for conjugation invariant random permutations with few cycles and we improve the results already known for the longest increasing subsequence. The second approach is a suggestion of a generalization to other random permutations and other sets having a similar structure than the symmetric group.
KW - math.PR
KW - math.CO
M3 - Journal article
JO - arXiv
JF - arXiv
SN - 2331-8422
ER -