Final published version, 1.18 MB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Using green infrastructure to improve urban air quality (GI4AQ)
AU - Hewitt, C N
AU - Ashworth, Kirsti
AU - MacKenzie, A.R.
PY - 2019/3/16
Y1 - 2019/3/16
N2 - As evidence for the devastating impacts of air pollution on human health continues to increase, improving urban air quality has become one of the most pressing tasks facing policy makers world-wide. Increasingly, and very often on the basis of conflicting and/or weak evidence, the introduction of green infrastructure (GI) is seen as a win–win solution to urban air pollution, reducing ground-level concentrations without imposing restrictions on traffic and other polluting activities. The impact of GI on air quality is highly context dependent, with models suggesting that GI can improve urban air quality in some situations, but be ineffective or even detrimental in others. Here we set out a novel conceptual framework explaining how and where GI can improve air quality, and offer six specific policy interventions, underpinned by research, that will always allow GI to improve air quality. We call GI with unambiguous benefits for air quality GI4AQ. However, GI4AQ will always be a third-order option for mitigating air pollution, after reducing emissions and extending the distance between sources and receptors.
AB - As evidence for the devastating impacts of air pollution on human health continues to increase, improving urban air quality has become one of the most pressing tasks facing policy makers world-wide. Increasingly, and very often on the basis of conflicting and/or weak evidence, the introduction of green infrastructure (GI) is seen as a win–win solution to urban air pollution, reducing ground-level concentrations without imposing restrictions on traffic and other polluting activities. The impact of GI on air quality is highly context dependent, with models suggesting that GI can improve urban air quality in some situations, but be ineffective or even detrimental in others. Here we set out a novel conceptual framework explaining how and where GI can improve air quality, and offer six specific policy interventions, underpinned by research, that will always allow GI to improve air quality. We call GI with unambiguous benefits for air quality GI4AQ. However, GI4AQ will always be a third-order option for mitigating air pollution, after reducing emissions and extending the distance between sources and receptors.
KW - Air pollution
KW - Air quality
KW - Green infrastructure
KW - Urban environment
U2 - 10.1007/s13280-019-01164-3
DO - 10.1007/s13280-019-01164-3
M3 - Journal article
VL - 49
SP - 62
EP - 73
JO - AMBIO: A Journal of the Human Environment
JF - AMBIO: A Journal of the Human Environment
SN - 0044-7447
IS - 1
ER -