Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Using Machine Learning to Make Computationally Inexpensive Projections of 21st Century Stratospheric Column Ozone Changes in the Tropics
AU - Keeble, James
AU - Yiu, Yu Yeung Scott
AU - Archibald, Alexander T.
AU - O’Connor, Fiona
AU - Sellar, Alistair
AU - Walton, Jeremy
AU - Pyle, John A.
N1 - Publisher Copyright: © Copyright © 2021 Keeble, Yiu, Archibald, O'connor, Sellar, Walton and Pyle.
PY - 2021/1/14
Y1 - 2021/1/14
N2 - Stratospheric ozone projections in the tropics, modeled using the UKESM1 Earth system model, are explored under different Shared Socioeconomic Pathways (SSPs). Consistent with other studies, it is found that tropical stratospheric column ozone does not return to 1980s values by the end of the 21st century under any SSP scenario as increased ozone mixing ratios in the tropical upper stratosphere are offset by continued ozone decreases in the tropical lower stratosphere. Stratospheric column ozone is projected to be largest under SSP scenarios with the smallest change in radiative forcing, and smallest for SSP scenarios with larger radiative forcing, consistent with a faster Brewer-Dobson circulation at high greenhouse gas loadings. This study explores the use of machine learning (ML) techniques to make accurate, computationally inexpensive projections of tropical stratospheric column ozone. Four ML techniques are investigated: Ridge regression, Lasso regression, Random Forests and Extra Trees. All four techniques investigated here are able to make projections of future tropical stratospheric column ozone which agree well with those made by the UKESM1 Earth system model, often falling within the ensemble spread of UKESM1 simulations for a broad range of SSPs. However, all techniques struggle to make accurate projects for the final decades of the SSP5-8.5 scenario. Accurate projections can only be achieved when the ML methods are trained on sufficient data, including both historical and future simulations. When trained only on historical data, the projections made using models based on ML techniques fail to accurately predict tropical stratospheric ozone changes. Results presented here indicate that, when sufficiently trained, ML models have the potential to make accurate, computationally inexpensive projections of tropical stratospheric column ozone. Further development of these models may reduce the computational burden placed on fully coupled chemistry-climate and Earth system models and enable the exploration of tropical stratospheric column ozone recovery under a much broader range of future emissions scenarios.
AB - Stratospheric ozone projections in the tropics, modeled using the UKESM1 Earth system model, are explored under different Shared Socioeconomic Pathways (SSPs). Consistent with other studies, it is found that tropical stratospheric column ozone does not return to 1980s values by the end of the 21st century under any SSP scenario as increased ozone mixing ratios in the tropical upper stratosphere are offset by continued ozone decreases in the tropical lower stratosphere. Stratospheric column ozone is projected to be largest under SSP scenarios with the smallest change in radiative forcing, and smallest for SSP scenarios with larger radiative forcing, consistent with a faster Brewer-Dobson circulation at high greenhouse gas loadings. This study explores the use of machine learning (ML) techniques to make accurate, computationally inexpensive projections of tropical stratospheric column ozone. Four ML techniques are investigated: Ridge regression, Lasso regression, Random Forests and Extra Trees. All four techniques investigated here are able to make projections of future tropical stratospheric column ozone which agree well with those made by the UKESM1 Earth system model, often falling within the ensemble spread of UKESM1 simulations for a broad range of SSPs. However, all techniques struggle to make accurate projects for the final decades of the SSP5-8.5 scenario. Accurate projections can only be achieved when the ML methods are trained on sufficient data, including both historical and future simulations. When trained only on historical data, the projections made using models based on ML techniques fail to accurately predict tropical stratospheric ozone changes. Results presented here indicate that, when sufficiently trained, ML models have the potential to make accurate, computationally inexpensive projections of tropical stratospheric column ozone. Further development of these models may reduce the computational burden placed on fully coupled chemistry-climate and Earth system models and enable the exploration of tropical stratospheric column ozone recovery under a much broader range of future emissions scenarios.
KW - CMIP6
KW - earth system model
KW - future ozone projections
KW - machine learning
KW - stratospheric ozone
KW - UKESM1
U2 - 10.3389/feart.2020.592667
DO - 10.3389/feart.2020.592667
M3 - Journal article
AN - SCOPUS:85100081138
VL - 8
JO - Frontiers in Earth Science
JF - Frontiers in Earth Science
SN - 2296-6463
M1 - 592667
ER -