Home > Research > Researchers > Professor Christopher Nemeth > Publications

Professor Christopher Nemeth

Professor of Probabilistic Machine Learning, Research Student

  1. 2025
  2. Published

    Scalable Monte Carlo for Bayesian Learning

    Fearnhead, P., Nemeth, C., Oates, C. J. & Sherlock, C., 5/05/2025, Cambridge: Cambridge University Press. ( Institute of Mathematical Statistics Monographs)

    Research output: Book/Report/ProceedingsBook

  3. Published

    Stochastic Gradient MCMC for Nonlinear State Space Models*

    Aicher, C., Putcha, S., Nemeth, C., Fearnhead, P. & Fox, E. B., 31/03/2025, In: Bayesian Analysis. 20, 1, p. 1385-1407 23 p.

    Research output: Contribution to Journal/MagazineJournal articlepeer-review

  4. E-pub ahead of print

    A changepoint approach to modelling non-stationary soil moisture dynamics

    Gong, M., Killick, R., Nemeth, C. & Quinton, J., 29/01/2025, (E-pub ahead of print) In: Journal of the Royal Statistical Society. Series C: Applied Statistics. 74, 3, p. 866-883 18 p., qlaf004.

    Research output: Contribution to Journal/MagazineJournal articlepeer-review

  5. 2024
  6. Published

    Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI

    Papamarkou, T., Skoularidou, M., Palla, K., Aitchison, L., Arbel, J., Dunson, D., Filippone, M., Fortuin, V., Hennig, P., Hernández-Lobato, J. M., Hubin, A., Immer, A., Karaletsos, T., Khan, M. E., Kristiadi, A., Li, Y., Mandt, S., Nemeth, C., Osborne, M. A. & Rudner, T. G. J. & 5 others, Rügamer, D., Teh, Y. W., Welling, M., Wilson, A. G. & Zhang, R., 31/12/2024, In: Proceedings of Machine Learning Research. 235, p. 39556-39586 31 p.

    Research output: Contribution to Journal/MagazineConference articlepeer-review

  7. Published

    Latent Space Modelling of Hypergraph Data

    Turnbull, K., Lunagomez, S., Nemeth, C. & Airoldi, E., 31/10/2024, In: Journal of the American Statistical Association. 119, 548, p. 2634-2646 13 p.

    Research output: Contribution to Journal/MagazineJournal articlepeer-review

  8. Forthcoming

    Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing Flows

    Cabezas Gonzalez, A., Sharrock, L. & Nemeth, C., 25/09/2024, (Accepted/In press) In: Advances in Neural Information Processing Systems.

    Research output: Contribution to Journal/MagazineConference articlepeer-review

  9. Published

    Tuning-Free Maximum Likelihood Training of Latent Variable Models via Coin Betting

    Sharrock, L., Dodd, D. & Nemeth, C., 19/07/2024, In: Proceedings of Machine Learning Research. 238, p. 1810-1818 9 p.

    Research output: Contribution to Journal/MagazineConference articlepeer-review

  10. Published

    Robust Bayesian nonparametric variable selection for linear regression

    Cabezas, A., Battiston, M. & Nemeth, C., 27/05/2024, In: Stat. 13, 2, e696.

    Research output: Contribution to Journal/MagazineJournal articlepeer-review

  11. Forthcoming

    Learning-Rate-Free Stochastic Optimization over Riemannian Manifolds

    Dodd, D., Sharrock, L. & Nemeth, C., 1/05/2024, (Accepted/In press) In: Proceedings of Machine Learning Research.

    Research output: Contribution to Journal/MagazineConference articlepeer-review

  12. E-pub ahead of print

    Seconder of the vote of thanks and contribution to the Discussion of ‘the Discussion Meeting on Probabilistic and statistical aspects of machine learning’

    Nemeth, C., 2/01/2024, (E-pub ahead of print) In: Journal of the Royal Statistical Society: Series B (Statistical Methodology).

    Research output: Contribution to Journal/MagazineJournal articlepeer-review

Previous 1 2 3 4 5 6 Next

Back to top