Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - A geospatial analysis of local intermediate snail host distributions provides insight into schistosomiasis risk within under-sampled areas of southern Lake Malawi
AU - Reed, Amber L.
AU - Al-Harbi, Mohammad H.
AU - Makaula, Peter
AU - Condemine, Charlotte
AU - Hesketh, Josie
AU - Archer, John
AU - Jones, Sam
AU - Kayuni, Sekeleghe A.
AU - Musaya, Janelisa
AU - Stanton, Michelle C.
AU - Stothard, J. Russell
AU - Fronterre, Claudio
AU - Jewell, Christopher
PY - 2024/6/27
Y1 - 2024/6/27
N2 - Background: Along the southern shoreline of Lake Malawi, the incidence of schistosomiasis is increasing with snails of the genera Bulinus and Biomphalaria transmitting urogenital and intestinal schistosomiasis, respectively. Since the underlying distribution of snails is partially known, often being focal, developing pragmatic spatial models that interpolate snail information across under-sampled regions is required to understand and assess current and future risk of schistosomiasis. Methods: A secondary geospatial analysis of recently collected malacological and environmental survey data was undertaken. Using a Bayesian Poisson latent Gaussian process model, abundance data were fitted for Bulinus and Biomphalaria. Interpolating the abundance of snails along the shoreline (given their relative distance along the shoreline) was achieved by smoothing, using extracted environmental rainfall, land surface temperature (LST), evapotranspiration, normalised difference vegetation index (NDVI) and soil type covariate data for all predicted locations. Our adopted model used a combination of two-dimensional (2D) and one dimensional (1D) mapping. Results: A significant association between normalised difference vegetation index (NDVI) and abundance of Bulinus spp. was detected (log risk ratio − 0.83, 95% CrI − 1.57, − 0.09). A qualitatively similar association was found between NDVI and Biomphalaria sp. but was not statistically significant (log risk ratio − 1.42, 95% CrI − 3.09, 0.10). Analyses of all other environmental data were considered non-significant. Conclusions: The spatial range in which interpolation of snail distributions is possible appears < 10km owing to fine-scale biotic and abiotic heterogeneities. The forthcoming challenge is to refine geospatial sampling frameworks with future opportunities to map schistosomiasis within actual or predicted snail distributions. In so doing, this would better reveal local environmental transmission possibilities. Graphical Abstract:
AB - Background: Along the southern shoreline of Lake Malawi, the incidence of schistosomiasis is increasing with snails of the genera Bulinus and Biomphalaria transmitting urogenital and intestinal schistosomiasis, respectively. Since the underlying distribution of snails is partially known, often being focal, developing pragmatic spatial models that interpolate snail information across under-sampled regions is required to understand and assess current and future risk of schistosomiasis. Methods: A secondary geospatial analysis of recently collected malacological and environmental survey data was undertaken. Using a Bayesian Poisson latent Gaussian process model, abundance data were fitted for Bulinus and Biomphalaria. Interpolating the abundance of snails along the shoreline (given their relative distance along the shoreline) was achieved by smoothing, using extracted environmental rainfall, land surface temperature (LST), evapotranspiration, normalised difference vegetation index (NDVI) and soil type covariate data for all predicted locations. Our adopted model used a combination of two-dimensional (2D) and one dimensional (1D) mapping. Results: A significant association between normalised difference vegetation index (NDVI) and abundance of Bulinus spp. was detected (log risk ratio − 0.83, 95% CrI − 1.57, − 0.09). A qualitatively similar association was found between NDVI and Biomphalaria sp. but was not statistically significant (log risk ratio − 1.42, 95% CrI − 3.09, 0.10). Analyses of all other environmental data were considered non-significant. Conclusions: The spatial range in which interpolation of snail distributions is possible appears < 10km owing to fine-scale biotic and abiotic heterogeneities. The forthcoming challenge is to refine geospatial sampling frameworks with future opportunities to map schistosomiasis within actual or predicted snail distributions. In so doing, this would better reveal local environmental transmission possibilities. Graphical Abstract:
KW - Bayesian multilevel models
KW - Geospatial analysis
KW - Snail abundance
KW - Gaussian latent process
KW - Remote sensing
KW - Bulinus
KW - Biomphalaria
U2 - 10.1186/s13071-024-06353-y
DO - 10.1186/s13071-024-06353-y
M3 - Journal article
VL - 17
JO - Parasites & vectors
JF - Parasites & vectors
SN - 1756-3305
IS - 1
M1 - 272
ER -