Rights statement: This is the author’s version of a work that was accepted for publication in IFAC-PapersOnLine. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in IFAC-PapersOnLine, 55, 10, 2022 DOI: 10.1016/j.ifacol.2022.10.110
Accepted author manuscript, 1.18 MB, PDF document
Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - A Nonlinear Discrete-Time Sliding Mode Controller for Autonomous Navigation of an Aerial Vehicle Using Hector SLAM
AU - Can, Aydin
AU - Price, Joshua
AU - Montazeri, Allahyar
N1 - This is the author’s version of a work that was accepted for publication in IFAC-PapersOnLine. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in IFAC-PapersOnLine, 55, 10, 2022 DOI: 10.1016/j.ifacol.2022.10.110
PY - 2022/12/31
Y1 - 2022/12/31
N2 - In this paper, a discrete-time sliding mode controller (DTSMC) is designed for full position and attitude control of a quadrotor UAV. The aim of this study is to design a controller suitable for practical implementation on an autonomous quadrotor for remote sensing in hostile nuclear environments. A nested DTSMC is developed and compared against two continuous-time sliding mode control methods; classical SMC, as well as a chattering-free SMC (CFSMC), studied in the previous works. The performance of the controllers is evaluated in combination with the Hector SLAM algorithm for localisation in GPS-denied environments. For this purpose, MATLAB in combination with the Robotic Operating System (ROS) is used to develop the controllers. Control signals are sent from MATLAB to the Gazebo simulation environment in ROS, which simulates the quadrotor and runs the Hector SLAM algorithm.
AB - In this paper, a discrete-time sliding mode controller (DTSMC) is designed for full position and attitude control of a quadrotor UAV. The aim of this study is to design a controller suitable for practical implementation on an autonomous quadrotor for remote sensing in hostile nuclear environments. A nested DTSMC is developed and compared against two continuous-time sliding mode control methods; classical SMC, as well as a chattering-free SMC (CFSMC), studied in the previous works. The performance of the controllers is evaluated in combination with the Hector SLAM algorithm for localisation in GPS-denied environments. For this purpose, MATLAB in combination with the Robotic Operating System (ROS) is used to develop the controllers. Control signals are sent from MATLAB to the Gazebo simulation environment in ROS, which simulates the quadrotor and runs the Hector SLAM algorithm.
KW - Sliding mode control
KW - Quadrotor control
KW - Nonlinear discrete-time control
KW - Hector SLAM
KW - Trajectory tracking
U2 - 10.1016/j.ifacol.2022.10.110
DO - 10.1016/j.ifacol.2022.10.110
M3 - Journal article
VL - 55
SP - 2653
EP - 2658
JO - IFAC-PapersOnLine
JF - IFAC-PapersOnLine
SN - 2405-8963
IS - 10
T2 - 10th IFAC Conference on Manufacturing Modelling, Management and Control
Y2 - 22 June 2022 through 24 June 2022
ER -