Submitted manuscript, 398 KB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Accepted author manuscript, 423 KB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Final published version, 524 KB, PDF document
Available under license: CC BY
Submitted manuscript
Licence: Other
Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Automorphism groupoids in noncommutative projective geometry
AU - Cooney, Nicholas
AU - Grabowski, Jan Edward
PY - 2022/8/15
Y1 - 2022/8/15
N2 - We address a natural question in noncommutative geometry, namely the rigidity observed in many examples, whereby noncommutative spaces (or equivalently their coordinate algebras) have very few automorphisms by comparison with their commutative counterparts. In the framework of noncommutative projective geometry, we define a groupoid whose objects are noncommutative projective spaces of a given dimension and whose morphisms correspond to isomorphisms of these. This groupoid is then a natural generalization of an automorphism group. Using work of Zhang, we may translate this structure to the algebraic side, wherein we consider homogeneous coordinate algebras of noncommutative projective spaces. The morphisms in our groupoid precisely correspond to the existence of a Zhang twist relating the two coordinate algebras. We analyse this automorphism groupoid, showing that in dimension 1 it is connected, so that every noncommutative ℙ1 is isomorphic to commutative ℙ1. For dimension 2 and above, we use the geometry of the point scheme, as introduced by Artin-Tate-Van den Bergh, to relate morphisms in our groupoid to certain automorphisms of the point scheme. We apply our results to two important examples, quantum projective spaces and Sklyanin algebras. In both cases, we are able to use the geometry of the point schemes to fully describe the corresponding component of the automorphism groupoid. This provides a concrete description of the collection of Zhang twists of these algebras.
AB - We address a natural question in noncommutative geometry, namely the rigidity observed in many examples, whereby noncommutative spaces (or equivalently their coordinate algebras) have very few automorphisms by comparison with their commutative counterparts. In the framework of noncommutative projective geometry, we define a groupoid whose objects are noncommutative projective spaces of a given dimension and whose morphisms correspond to isomorphisms of these. This groupoid is then a natural generalization of an automorphism group. Using work of Zhang, we may translate this structure to the algebraic side, wherein we consider homogeneous coordinate algebras of noncommutative projective spaces. The morphisms in our groupoid precisely correspond to the existence of a Zhang twist relating the two coordinate algebras. We analyse this automorphism groupoid, showing that in dimension 1 it is connected, so that every noncommutative ℙ1 is isomorphic to commutative ℙ1. For dimension 2 and above, we use the geometry of the point scheme, as introduced by Artin-Tate-Van den Bergh, to relate morphisms in our groupoid to certain automorphisms of the point scheme. We apply our results to two important examples, quantum projective spaces and Sklyanin algebras. In both cases, we are able to use the geometry of the point schemes to fully describe the corresponding component of the automorphism groupoid. This provides a concrete description of the collection of Zhang twists of these algebras.
KW - Noncommutative projective geometry
KW - Zhang twist
KW - Point scheme
U2 - 10.1016/j.jalgebra.2022.03.045
DO - 10.1016/j.jalgebra.2022.03.045
M3 - Journal article
VL - 604
SP - 296
EP - 323
JO - Journal of Algebra
JF - Journal of Algebra
SN - 0021-8693
ER -