Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Canted spin order as a platform for ultrafast conversion of magnons
AU - Leenders, R A
AU - Afanasiev, D
AU - Kimel, A V
AU - Mikhaylovskiy, R V
PY - 2024/6/13
Y1 - 2024/6/13
N2 - Traditionally, magnetic solids are divided into two main classes—ferromagnets and antiferromagnets with parallel and antiparallel spin orders, respectively. Although normally the antiferromagnets have zero magnetization, in some of them an additional antisymmetric spin–spin interaction arises owing to a strong spin–orbit coupling and results in canting of the spins, thereby producing net magnetization. The canted antiferromagnets combine antiferromagnetic order with phenomena typical of ferromagnets and hold great potential for spintronics and magnonics1–5. In this way, they can be identified as closely related to the recently proposed new class of magnetic materials called altermagnets6–9. Altermagnets are predicted to have strong magneto-optical effects, terahertz-frequency spin dynamics and degeneracy lifting for chiral spin waves10 (that is, all of the effects present in the canted antiferromagnets11, 12). Here, by utilizing these unique phenomena, we demonstrate a new functionality of canted spin order for magnonics and show that it facilitates mechanisms converting a magnon at the centre of the Brillouin zone into propagating magnons using nonlinear magnon–magnon interactions activated by an ultrafast laser pulse. Our experimental findings supported by theoretical analysis show that the mechanism is enabled by the spin canting.
AB - Traditionally, magnetic solids are divided into two main classes—ferromagnets and antiferromagnets with parallel and antiparallel spin orders, respectively. Although normally the antiferromagnets have zero magnetization, in some of them an additional antisymmetric spin–spin interaction arises owing to a strong spin–orbit coupling and results in canting of the spins, thereby producing net magnetization. The canted antiferromagnets combine antiferromagnetic order with phenomena typical of ferromagnets and hold great potential for spintronics and magnonics1–5. In this way, they can be identified as closely related to the recently proposed new class of magnetic materials called altermagnets6–9. Altermagnets are predicted to have strong magneto-optical effects, terahertz-frequency spin dynamics and degeneracy lifting for chiral spin waves10 (that is, all of the effects present in the canted antiferromagnets11, 12). Here, by utilizing these unique phenomena, we demonstrate a new functionality of canted spin order for magnonics and show that it facilitates mechanisms converting a magnon at the centre of the Brillouin zone into propagating magnons using nonlinear magnon–magnon interactions activated by an ultrafast laser pulse. Our experimental findings supported by theoretical analysis show that the mechanism is enabled by the spin canting.
U2 - 10.1038/s41586-024-07448-3
DO - 10.1038/s41586-024-07448-3
M3 - Journal article
C2 - 38811734
VL - 630
SP - 335
EP - 339
JO - Nature
JF - Nature
SN - 0028-0836
ER -