Final published version, 5.13 MB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
<mark>Journal publication date</mark> | 30/09/2021 |
---|---|
<mark>Journal</mark> | Asian Journal of Organic Chemistry |
Issue number | 9 |
Volume | 10 |
Number of pages | 6 |
Pages (from-to) | 2379-2384 |
Publication Status | Published |
Early online date | 27/07/21 |
<mark>Original language</mark> | English |
Alkene hydrosilylation is amongst the largest industrial homogenous catalysis processes. Cobalt catalysis offers a sustainable alternative to commonly used platinum catalysts to achieve this transformation. Using two bisiminopyridine cobalt(II) catalysts the regiodivergent hydrosilylation of alkenes has been developed. Variation of pre-catalyst activator and ligand substituents were investigated to enable the controlled, regiodivergent hydrosilylation of both aryl- and alkyl-substituted alkenes with phenylsilane. In contrast to other regiodivergence strategies, excellent regioselectivity for either isomer was achieved using the same ligand class but differing by a single methyl group (ethyl vs isopropyl).