Home > Research > Publications & Outputs > Collisionless Heat Flux Regulation via the Elec...

Electronic data

  • 2007.07143

    Rights statement: This is an author-created, un-copyedited version of an article accepted for publication/published in Astrophysical Journal Letters. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at doi: 10.3847/2041-8213/aba591

    Accepted author manuscript, 665 KB, PDF document

    Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License

Links

Text available via DOI:

View graph of relations

Collisionless Heat Flux Regulation via the Electron Firehose Instability in the Presence of a Core and Suprathermal Population in the Expanding Solar Wind

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
Close
Article numberL41
<mark>Journal publication date</mark>30/07/2020
<mark>Journal</mark>Astrophysical Journal Letters
Issue number2
Volume898
Number of pages6
Publication StatusPublished
<mark>Original language</mark>English

Abstract

The evolution of the electron heat flux in the solar wind is regulated by the interplay between several effects: solar wind expansion, which can potentially drive velocity–space instabilities, turbulence, wave–particle interactions, and, possibly, collisions. Here we address the respective role played by the solar wind expansion and the electron firehose instability (EFI), developing in the presence of multiple electron populations, in regulating the heat flux. We carry out fully kinetic, expanding box model simulations and separately analyze the enthalpy, bulk, and velocity distribution function skewness contributions for each of the electron species. We observe that the key factor determining electron energy flux evolution is the reduction of the drift velocity of the electron populations in the rest frame of the solar wind. In our simulations, redistribution of the electron thermal energy from the parallel to the perpendicular direction after the onset of the EFI is observed. However, this process seems to impact energy flux evolution only minimally. Hence, reduction of the electron species drift velocity in the solar wind frame appears to directly correlate with efficiency for heat flux instabilities.

Bibliographic note

This is an author-created, un-copyedited version of an article accepted for publication/published in Astrophysical Journal Letters. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at doi: 10.3847/2041-8213/aba591