Rights statement: This is an author-created, un-copyedited version of an article accepted for publication/published in Astrophysical Journal Letters. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at doi: 10.3847/2041-8213/aba591
Accepted author manuscript, 665 KB, PDF document
Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Collisionless Heat Flux Regulation via the Electron Firehose Instability in the Presence of a Core and Suprathermal Population in the Expanding Solar Wind
AU - Innocenti, Maria Elena
AU - Boella, Elisabetta
AU - Tenerani, Anna
AU - Velli, Marco
N1 - This is an author-created, un-copyedited version of an article accepted for publication/published in Astrophysical Journal Letters. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at doi: 10.3847/2041-8213/aba591
PY - 2020/7/30
Y1 - 2020/7/30
N2 - The evolution of the electron heat flux in the solar wind is regulated by the interplay between several effects: solar wind expansion, which can potentially drive velocity–space instabilities, turbulence, wave–particle interactions, and, possibly, collisions. Here we address the respective role played by the solar wind expansion and the electron firehose instability (EFI), developing in the presence of multiple electron populations, in regulating the heat flux. We carry out fully kinetic, expanding box model simulations and separately analyze the enthalpy, bulk, and velocity distribution function skewness contributions for each of the electron species. We observe that the key factor determining electron energy flux evolution is the reduction of the drift velocity of the electron populations in the rest frame of the solar wind. In our simulations, redistribution of the electron thermal energy from the parallel to the perpendicular direction after the onset of the EFI is observed. However, this process seems to impact energy flux evolution only minimally. Hence, reduction of the electron species drift velocity in the solar wind frame appears to directly correlate with efficiency for heat flux instabilities.
AB - The evolution of the electron heat flux in the solar wind is regulated by the interplay between several effects: solar wind expansion, which can potentially drive velocity–space instabilities, turbulence, wave–particle interactions, and, possibly, collisions. Here we address the respective role played by the solar wind expansion and the electron firehose instability (EFI), developing in the presence of multiple electron populations, in regulating the heat flux. We carry out fully kinetic, expanding box model simulations and separately analyze the enthalpy, bulk, and velocity distribution function skewness contributions for each of the electron species. We observe that the key factor determining electron energy flux evolution is the reduction of the drift velocity of the electron populations in the rest frame of the solar wind. In our simulations, redistribution of the electron thermal energy from the parallel to the perpendicular direction after the onset of the EFI is observed. However, this process seems to impact energy flux evolution only minimally. Hence, reduction of the electron species drift velocity in the solar wind frame appears to directly correlate with efficiency for heat flux instabilities.
KW - Solar wind
KW - Space plasmas
U2 - 10.3847/2041-8213/aba591
DO - 10.3847/2041-8213/aba591
M3 - Journal article
VL - 898
JO - Astrophysical Journal Letters
JF - Astrophysical Journal Letters
SN - 2041-8205
IS - 2
M1 - L41
ER -