Home > Research > Publications & Outputs > Cosmic ray muon clustering for the MicroBooNE l...

Associated organisational unit

Electronic data

  • 2201.05705

    Accepted author manuscript, 4.03 MB, PDF document

Links

Text available via DOI:

View graph of relations

Cosmic ray muon clustering for the MicroBooNE liquid argon time projection chamber using sMask-RCNN

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Cosmic ray muon clustering for the MicroBooNE liquid argon time projection chamber using sMask-RCNN. / The MicroBooNE collaboration ; Blake, A.; Devitt, A. et al.
In: Journal of Instrumentation, Vol. 17, No. 9, P09015, 12.09.2022.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

The MicroBooNE collaboration, Blake A, Devitt A, Nowak J, Patel N, Thorpe C. Cosmic ray muon clustering for the MicroBooNE liquid argon time projection chamber using sMask-RCNN. Journal of Instrumentation. 2022 Sept 12;17(9):P09015. doi: 10.1088/1748-0221/17/09/P09015

Author

The MicroBooNE collaboration ; Blake, A. ; Devitt, A. et al. / Cosmic ray muon clustering for the MicroBooNE liquid argon time projection chamber using sMask-RCNN. In: Journal of Instrumentation. 2022 ; Vol. 17, No. 9.

Bibtex

@article{3481ab4dd530415c81b96bd47dfd06d1,
title = "Cosmic ray muon clustering for the MicroBooNE liquid argon time projection chamber using sMask-RCNN",
abstract = "In this article, we describe a modified implementation of Mask Region-based Convolutional Neural Networks (Mask-RCNN) for cosmic ray muon clustering in a liquid argon TPC and applied to MicroBooNE neutrino data. Our implementation of this network, called sMask-RCNN, uses sparse submanifold convolutions to increase processing speed on sparse datasets, and is compared to the original dense version in several metrics. The networks are trained to use wire readout images from the MicroBooNE liquid argon time projection chamber as input and produce individually labeled particle interactions within the image. These outputs are identified as either cosmic ray muon or electron neutrino interactions. We find that sMask-RCNN has an average pixel clustering efficiency of 85.9% compared to the dense network's average pixel clustering efficiency of 89.1%. We demonstrate the ability of sMask-RCNN used in conjunction with MicroBooNE's state-of-the-art Wire-Cell cosmic tagger to veto events containing only cosmic ray muons. The addition of sMask-RCNN to the Wire-Cell cosmic tagger removes 70% of the remaining cosmic ray muon background events at the same electron neutrino event signal efficiency. This event veto can provide 99.7% rejection of cosmic ray-only background events while maintaining an electron neutrino event-level signal efficiency of 80.1%. In addition to cosmic ray muon identification, sMask-RCNN could be used to extract features and identify different particle interaction types in other 3D-tracking detectors.",
keywords = "Particle identification methods, Pattern recognition, cluster finding, calibration and fitting methods, Time projection chambers",
author = "{The MicroBooNE collaboration} and P. Abratenko and R. An and J. Anthony and L. Arellano and J. Asaadi and A. Ashkenazi and S. Balasubramanian and B. Baller and G. Barr and J. Barrow and V. Basque and L. Bathe-Peters and O. Benevides Rodrigues and S. Berkman and A. Bhanderi and A. Bhat and M. Bishai and A. Blake and T. Bolton and Book, {J. Y.} and L. Camilleri and D. Caratelli and I. Caro Terrazas and F. Cavanna and G. Cerati and E. Church and D. Cianci and Conrad, {J. M.} and M. Convery and L. Cooper-Troendle and Crespo-Anad{\'o}n, {J. I.} and M. Del Tutto and Dennis, {S. R.} and P. Detje and A. Devitt and R. Diurba and R. Dorrill and K. Duffy and S. Dytman and B. Eberly and A. Ereditato and R. Fine and Fiorentini Aguirre, {G. A.} and Fitzpatrick, {R. S.} and Fleming, {B. T.} and N. Foppiani and D. Franco and J. Nowak and N. Patel and C. Thorpe",
year = "2022",
month = sep,
day = "12",
doi = "10.1088/1748-0221/17/09/P09015",
language = "English",
volume = "17",
journal = "Journal of Instrumentation",
issn = "1748-0221",
publisher = "Institute of Physics Publishing",
number = "9",

}

RIS

TY - JOUR

T1 - Cosmic ray muon clustering for the MicroBooNE liquid argon time projection chamber using sMask-RCNN

AU - The MicroBooNE collaboration

AU - Abratenko, P.

AU - An, R.

AU - Anthony, J.

AU - Arellano, L.

AU - Asaadi, J.

AU - Ashkenazi, A.

AU - Balasubramanian, S.

AU - Baller, B.

AU - Barr, G.

AU - Barrow, J.

AU - Basque, V.

AU - Bathe-Peters, L.

AU - Benevides Rodrigues, O.

AU - Berkman, S.

AU - Bhanderi, A.

AU - Bhat, A.

AU - Bishai, M.

AU - Blake, A.

AU - Bolton, T.

AU - Book, J. Y.

AU - Camilleri, L.

AU - Caratelli, D.

AU - Caro Terrazas, I.

AU - Cavanna, F.

AU - Cerati, G.

AU - Church, E.

AU - Cianci, D.

AU - Conrad, J. M.

AU - Convery, M.

AU - Cooper-Troendle, L.

AU - Crespo-Anadón, J. I.

AU - Del Tutto, M.

AU - Dennis, S. R.

AU - Detje, P.

AU - Devitt, A.

AU - Diurba, R.

AU - Dorrill, R.

AU - Duffy, K.

AU - Dytman, S.

AU - Eberly, B.

AU - Ereditato, A.

AU - Fine, R.

AU - Fiorentini Aguirre, G. A.

AU - Fitzpatrick, R. S.

AU - Fleming, B. T.

AU - Foppiani, N.

AU - Franco, D.

AU - Nowak, J.

AU - Patel, N.

AU - Thorpe, C.

PY - 2022/9/12

Y1 - 2022/9/12

N2 - In this article, we describe a modified implementation of Mask Region-based Convolutional Neural Networks (Mask-RCNN) for cosmic ray muon clustering in a liquid argon TPC and applied to MicroBooNE neutrino data. Our implementation of this network, called sMask-RCNN, uses sparse submanifold convolutions to increase processing speed on sparse datasets, and is compared to the original dense version in several metrics. The networks are trained to use wire readout images from the MicroBooNE liquid argon time projection chamber as input and produce individually labeled particle interactions within the image. These outputs are identified as either cosmic ray muon or electron neutrino interactions. We find that sMask-RCNN has an average pixel clustering efficiency of 85.9% compared to the dense network's average pixel clustering efficiency of 89.1%. We demonstrate the ability of sMask-RCNN used in conjunction with MicroBooNE's state-of-the-art Wire-Cell cosmic tagger to veto events containing only cosmic ray muons. The addition of sMask-RCNN to the Wire-Cell cosmic tagger removes 70% of the remaining cosmic ray muon background events at the same electron neutrino event signal efficiency. This event veto can provide 99.7% rejection of cosmic ray-only background events while maintaining an electron neutrino event-level signal efficiency of 80.1%. In addition to cosmic ray muon identification, sMask-RCNN could be used to extract features and identify different particle interaction types in other 3D-tracking detectors.

AB - In this article, we describe a modified implementation of Mask Region-based Convolutional Neural Networks (Mask-RCNN) for cosmic ray muon clustering in a liquid argon TPC and applied to MicroBooNE neutrino data. Our implementation of this network, called sMask-RCNN, uses sparse submanifold convolutions to increase processing speed on sparse datasets, and is compared to the original dense version in several metrics. The networks are trained to use wire readout images from the MicroBooNE liquid argon time projection chamber as input and produce individually labeled particle interactions within the image. These outputs are identified as either cosmic ray muon or electron neutrino interactions. We find that sMask-RCNN has an average pixel clustering efficiency of 85.9% compared to the dense network's average pixel clustering efficiency of 89.1%. We demonstrate the ability of sMask-RCNN used in conjunction with MicroBooNE's state-of-the-art Wire-Cell cosmic tagger to veto events containing only cosmic ray muons. The addition of sMask-RCNN to the Wire-Cell cosmic tagger removes 70% of the remaining cosmic ray muon background events at the same electron neutrino event signal efficiency. This event veto can provide 99.7% rejection of cosmic ray-only background events while maintaining an electron neutrino event-level signal efficiency of 80.1%. In addition to cosmic ray muon identification, sMask-RCNN could be used to extract features and identify different particle interaction types in other 3D-tracking detectors.

KW - Particle identification methods

KW - Pattern recognition, cluster finding, calibration and fitting methods

KW - Time projection chambers

U2 - 10.1088/1748-0221/17/09/P09015

DO - 10.1088/1748-0221/17/09/P09015

M3 - Journal article

AN - SCOPUS:85144370972

VL - 17

JO - Journal of Instrumentation

JF - Journal of Instrumentation

SN - 1748-0221

IS - 9

M1 - P09015

ER -