Accepted author manuscript, 704 KB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Final published version
Licence: CC BY
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Distributionally Robust Resource Planning Under Binomial Demand Intakes
AU - Black, Ben
AU - Ainslie, Russell
AU - Dokka, Trivikram
AU - Kirkbride, Christopher
PY - 2023/4/1
Y1 - 2023/4/1
N2 - In this paper, we consider a distributionally robust resource planning model inspired by a real-world service industry problem. In this problem, there is a mixture of known demand and uncertain future demand. Prior to having full knowledge of the demand, we must decide upon how many jobs we plan to complete on each day in the planning horizon. Any jobs that are not completed by the end of their due date incur a cost and become due the following day. We present two distributionally robust optimisation (DRO) models for this problem. The first is a non-parametric model with a phi-divergence based ambiguity set. The second is a parametric model, where we treat the number of uncertain jobs due on each day as a binomial random variable with an unknown success probability. We reformulate the parametric model as a mixed integer program and find that it scales poorly with the sizes of the ambiguity and uncertainty sets. Hence, we make use of theoretical properties of the binomial distribution to derive fast heuristics based on dimension reduction. One is based on cutting surface algorithms commonly seen in the DRO literature. The other operates on a small subset of the uncertainty set for the future demand. We perform extensive computational experiments to establish the performance of our algorithms. We compare decisions from the parametric and non-parametric models, to assess the benefit of including the binomial information.
AB - In this paper, we consider a distributionally robust resource planning model inspired by a real-world service industry problem. In this problem, there is a mixture of known demand and uncertain future demand. Prior to having full knowledge of the demand, we must decide upon how many jobs we plan to complete on each day in the planning horizon. Any jobs that are not completed by the end of their due date incur a cost and become due the following day. We present two distributionally robust optimisation (DRO) models for this problem. The first is a non-parametric model with a phi-divergence based ambiguity set. The second is a parametric model, where we treat the number of uncertain jobs due on each day as a binomial random variable with an unknown success probability. We reformulate the parametric model as a mixed integer program and find that it scales poorly with the sizes of the ambiguity and uncertainty sets. Hence, we make use of theoretical properties of the binomial distribution to derive fast heuristics based on dimension reduction. One is based on cutting surface algorithms commonly seen in the DRO literature. The other operates on a small subset of the uncertainty set for the future demand. We perform extensive computational experiments to establish the performance of our algorithms. We compare decisions from the parametric and non-parametric models, to assess the benefit of including the binomial information.
KW - Uncertainty modelling
KW - distributionally robust optimisation
KW - heuristics
KW - resource planning
U2 - 10.1016/j.ejor.2022.08.019
DO - 10.1016/j.ejor.2022.08.019
M3 - Journal article
VL - 306
SP - 227
EP - 242
JO - European Journal of Operational Research
JF - European Journal of Operational Research
SN - 0377-2217
IS - 1
ER -