Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Eigenvalue sensitivity from eigenstate geometry near and beyond arbitrary-order exceptional points
AU - Schomerus, Henning
PY - 2024/1/11
Y1 - 2024/1/11
N2 - Systems with an effectively non-Hermitian Hamiltonian display an enhanced sensitivity to parametric and dynamic perturbations, which arises from the nonorthogonality of their eigenstates. This enhanced sensitivity can be quantified by the phase rigidity, which mathematically corresponds to the eigenvalue condition number and physically also determines the Petermann factor of quantum noise theory. Here, we derive an exact nonperturbative expression for this sensitivity measure that applies to arbitrary eigenvalue configurations. The expression separates spectral correlations from additional geometric data and retains a simple asymptotic behavior close to exceptional points (EPs) of any order, while capturing the role of additional states in the system. This reveals that such states can have a sizable effect even if they are spectrally well separated and identifies the specific matrix whose elements determine this nonperturbative effect. The employed algebraic approach, which follows the eigenvectors-from-eigenvalues school of thought, also provides direct insights into the geometry of the states near an EP. For instance, it can be used to show that the phase rigidity follows a striking equipartition principle in the quasidegenerate subspace of a system.
AB - Systems with an effectively non-Hermitian Hamiltonian display an enhanced sensitivity to parametric and dynamic perturbations, which arises from the nonorthogonality of their eigenstates. This enhanced sensitivity can be quantified by the phase rigidity, which mathematically corresponds to the eigenvalue condition number and physically also determines the Petermann factor of quantum noise theory. Here, we derive an exact nonperturbative expression for this sensitivity measure that applies to arbitrary eigenvalue configurations. The expression separates spectral correlations from additional geometric data and retains a simple asymptotic behavior close to exceptional points (EPs) of any order, while capturing the role of additional states in the system. This reveals that such states can have a sizable effect even if they are spectrally well separated and identifies the specific matrix whose elements determine this nonperturbative effect. The employed algebraic approach, which follows the eigenvectors-from-eigenvalues school of thought, also provides direct insights into the geometry of the states near an EP. For instance, it can be used to show that the phase rigidity follows a striking equipartition principle in the quasidegenerate subspace of a system.
KW - General Physics and Astronomy
U2 - 10.1103/physrevresearch.6.013044
DO - 10.1103/physrevresearch.6.013044
M3 - Journal article
VL - 6
JO - Physical Review Research
JF - Physical Review Research
SN - 2643-1564
IS - 1
M1 - 013044
ER -