Home > Research > Publications & Outputs > Endotrivial modules for finite groups of Lie ty...

Electronic data

  • glq32

    Rights statement: The final publication is available at Springer via http://dx.doi.org/10.1007/s00209-015-1529-1

    Accepted author manuscript, 394 KB, PDF document

    Available under license: CC BY: Creative Commons Attribution 4.0 International License

Links

Text available via DOI:

View graph of relations

Endotrivial modules for finite groups of Lie type A in nondefining characteristic

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Endotrivial modules for finite groups of Lie type A in nondefining characteristic. / Carlson, Jon; Mazza, Nadia; Nakano, Daniel.
In: Mathematische Zeitschrift, Vol. 282, No. 1, 02.2016, p. 1-24.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

Carlson J, Mazza N, Nakano D. Endotrivial modules for finite groups of Lie type A in nondefining characteristic. Mathematische Zeitschrift. 2016 Feb;282(1):1-24. Epub 2015 Sept 22. doi: 10.1007/s00209-015-1529-1

Author

Carlson, Jon ; Mazza, Nadia ; Nakano, Daniel. / Endotrivial modules for finite groups of Lie type A in nondefining characteristic. In: Mathematische Zeitschrift. 2016 ; Vol. 282, No. 1. pp. 1-24.

Bibtex

@article{b5d5806cbdc2404a9980106176d5e172,
title = "Endotrivial modules for finite groups of Lie type A in nondefining characteristic",
abstract = "Let $G$ be a finite group such that $\SL(n,q)\subseteq G \subseteq \GL(n,q)$ and $Z$ be a central subgroup of $G$. In this paper we determine the group $T(G/Z)$ consisting of the equivalence classes of endotrivial $k(G/Z)$-modules where $k$ is an algebraically closed field of characteristic $p$ such that $p$ does not divide $q$. The results in this paper complete the classification of endotrivial modules for all finite groups of (untwisted) Lie Type $A$, initiated earlier by the authors. ",
author = "Jon Carlson and Nadia Mazza and Daniel Nakano",
note = "The final publication is available at Springer via http://dx.doi.org/10.1007/s00209-015-1529-1",
year = "2016",
month = feb,
doi = "10.1007/s00209-015-1529-1",
language = "English",
volume = "282",
pages = "1--24",
journal = "Mathematische Zeitschrift",
issn = "0025-5874",
publisher = "Springer New York",
number = "1",

}

RIS

TY - JOUR

T1 - Endotrivial modules for finite groups of Lie type A in nondefining characteristic

AU - Carlson, Jon

AU - Mazza, Nadia

AU - Nakano, Daniel

N1 - The final publication is available at Springer via http://dx.doi.org/10.1007/s00209-015-1529-1

PY - 2016/2

Y1 - 2016/2

N2 - Let $G$ be a finite group such that $\SL(n,q)\subseteq G \subseteq \GL(n,q)$ and $Z$ be a central subgroup of $G$. In this paper we determine the group $T(G/Z)$ consisting of the equivalence classes of endotrivial $k(G/Z)$-modules where $k$ is an algebraically closed field of characteristic $p$ such that $p$ does not divide $q$. The results in this paper complete the classification of endotrivial modules for all finite groups of (untwisted) Lie Type $A$, initiated earlier by the authors.

AB - Let $G$ be a finite group such that $\SL(n,q)\subseteq G \subseteq \GL(n,q)$ and $Z$ be a central subgroup of $G$. In this paper we determine the group $T(G/Z)$ consisting of the equivalence classes of endotrivial $k(G/Z)$-modules where $k$ is an algebraically closed field of characteristic $p$ such that $p$ does not divide $q$. The results in this paper complete the classification of endotrivial modules for all finite groups of (untwisted) Lie Type $A$, initiated earlier by the authors.

U2 - 10.1007/s00209-015-1529-1

DO - 10.1007/s00209-015-1529-1

M3 - Journal article

VL - 282

SP - 1

EP - 24

JO - Mathematische Zeitschrift

JF - Mathematische Zeitschrift

SN - 0025-5874

IS - 1

ER -