Home > Research > Publications & Outputs > Exposure–response modelling approaches for dete...

Electronic data

  • maintex

    Rights statement: The final, definitive version of this article has been published in the Journal, Statistical Methods in Medical Research, 29 (9), 2020, © SAGE Publications Ltd, 2020 by SAGE Publications Ltd at the Statistical Methods in Medical Research page: https://journals.sagepub.com/home/SMM on SAGE Journals Online: http://journals.sagepub.com/

    Accepted author manuscript, 0.99 MB, PDF document

    Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License

Links

Text available via DOI:

View graph of relations

Exposure–response modelling approaches for determining optimal dosing rules in children

Research output: Contribution to journalJournal articlepeer-review

Published

Standard

Exposure–response modelling approaches for determining optimal dosing rules in children. / Wadsworth, I.; Hampson, L.V.; Bornkamp, B.; Jaki, T.

In: Statistical Methods in Medical Research, Vol. 29, No. 9, 01.09.2020, p. 2583-2602.

Research output: Contribution to journalJournal articlepeer-review

Harvard

APA

Vancouver

Author

Wadsworth, I. ; Hampson, L.V. ; Bornkamp, B. ; Jaki, T. / Exposure–response modelling approaches for determining optimal dosing rules in children. In: Statistical Methods in Medical Research. 2020 ; Vol. 29, No. 9. pp. 2583-2602.

Bibtex

@article{e65ef87370b84aadaf5a20d2e5c5e47c,
title = "Exposure–response modelling approaches for determining optimal dosing rules in children",
abstract = "Within paediatric populations, there may be distinct age groups characterised by different exposure–response relationships. Several regulatory guidance documents have suggested general age groupings. However, it is not clear whether these categorisations will be suitable for all new medicines and in all disease areas. We consider two model-based approaches to quantify how exposure–response model parameters vary over a continuum of ages: Bayesian penalised B-splines and model-based recursive partitioning. We propose an approach for deriving an optimal dosing rule given an estimate of how exposure–response model parameters vary with age. Methods are initially developed for a linear exposure–response model. We perform a simulation study to systematically evaluate how well the various approaches estimate linear exposure–response model parameters and the accuracy of recommended dosing rules. Simulation scenarios are motivated by an application to epilepsy drug development. Results suggest that both bootstrapped model-based recursive partitioning and Bayesian penalised B-splines can estimate underlying changes in linear exposure–response model parameters as well as (and in many scenarios, better than) a comparator linear model adjusting for a categorical age covariate with levels following International Conference on Harmonisation E11 groupings. Furthermore, the Bayesian penalised B-splines approach consistently estimates the intercept and slope more accurately than the bootstrapped model-based recursive partitioning. Finally, approaches are extended to estimate Emax exposure–response models and are illustrated with an example motivated by an in vitro study of cyclosporine.",
keywords = "Bayesian penalised B-splines, dosing rules, exposure–response modelling, model-based recursive partitioning, paediatric",
author = "I. Wadsworth and L.V. Hampson and B. Bornkamp and T. Jaki",
note = "The final, definitive version of this article has been published in the Journal, Statistical Methods in Medical Research, 29 (9), 2020, {\textcopyright} SAGE Publications Ltd, 2020 by SAGE Publications Ltd at the Statistical Methods in Medical Research page: https://journals.sagepub.com/home/SMM on SAGE Journals Online: http://journals.sagepub.com/ ",
year = "2020",
month = sep,
day = "1",
doi = "10.1177/0962280220903751",
language = "English",
volume = "29",
pages = "2583--2602",
journal = "Statistical Methods in Medical Research",
issn = "0962-2802",
publisher = "SAGE Publications Ltd",
number = "9",

}

RIS

TY - JOUR

T1 - Exposure–response modelling approaches for determining optimal dosing rules in children

AU - Wadsworth, I.

AU - Hampson, L.V.

AU - Bornkamp, B.

AU - Jaki, T.

N1 - The final, definitive version of this article has been published in the Journal, Statistical Methods in Medical Research, 29 (9), 2020, © SAGE Publications Ltd, 2020 by SAGE Publications Ltd at the Statistical Methods in Medical Research page: https://journals.sagepub.com/home/SMM on SAGE Journals Online: http://journals.sagepub.com/

PY - 2020/9/1

Y1 - 2020/9/1

N2 - Within paediatric populations, there may be distinct age groups characterised by different exposure–response relationships. Several regulatory guidance documents have suggested general age groupings. However, it is not clear whether these categorisations will be suitable for all new medicines and in all disease areas. We consider two model-based approaches to quantify how exposure–response model parameters vary over a continuum of ages: Bayesian penalised B-splines and model-based recursive partitioning. We propose an approach for deriving an optimal dosing rule given an estimate of how exposure–response model parameters vary with age. Methods are initially developed for a linear exposure–response model. We perform a simulation study to systematically evaluate how well the various approaches estimate linear exposure–response model parameters and the accuracy of recommended dosing rules. Simulation scenarios are motivated by an application to epilepsy drug development. Results suggest that both bootstrapped model-based recursive partitioning and Bayesian penalised B-splines can estimate underlying changes in linear exposure–response model parameters as well as (and in many scenarios, better than) a comparator linear model adjusting for a categorical age covariate with levels following International Conference on Harmonisation E11 groupings. Furthermore, the Bayesian penalised B-splines approach consistently estimates the intercept and slope more accurately than the bootstrapped model-based recursive partitioning. Finally, approaches are extended to estimate Emax exposure–response models and are illustrated with an example motivated by an in vitro study of cyclosporine.

AB - Within paediatric populations, there may be distinct age groups characterised by different exposure–response relationships. Several regulatory guidance documents have suggested general age groupings. However, it is not clear whether these categorisations will be suitable for all new medicines and in all disease areas. We consider two model-based approaches to quantify how exposure–response model parameters vary over a continuum of ages: Bayesian penalised B-splines and model-based recursive partitioning. We propose an approach for deriving an optimal dosing rule given an estimate of how exposure–response model parameters vary with age. Methods are initially developed for a linear exposure–response model. We perform a simulation study to systematically evaluate how well the various approaches estimate linear exposure–response model parameters and the accuracy of recommended dosing rules. Simulation scenarios are motivated by an application to epilepsy drug development. Results suggest that both bootstrapped model-based recursive partitioning and Bayesian penalised B-splines can estimate underlying changes in linear exposure–response model parameters as well as (and in many scenarios, better than) a comparator linear model adjusting for a categorical age covariate with levels following International Conference on Harmonisation E11 groupings. Furthermore, the Bayesian penalised B-splines approach consistently estimates the intercept and slope more accurately than the bootstrapped model-based recursive partitioning. Finally, approaches are extended to estimate Emax exposure–response models and are illustrated with an example motivated by an in vitro study of cyclosporine.

KW - Bayesian penalised B-splines

KW - dosing rules

KW - exposure–response modelling

KW - model-based recursive partitioning

KW - paediatric

U2 - 10.1177/0962280220903751

DO - 10.1177/0962280220903751

M3 - Journal article

VL - 29

SP - 2583

EP - 2602

JO - Statistical Methods in Medical Research

JF - Statistical Methods in Medical Research

SN - 0962-2802

IS - 9

ER -