Final published version, 1.5 MB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Submitted manuscript
Licence: CC BY: Creative Commons Attribution 4.0 International License
Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Fast Online Changepoint Detection via Functional Pruning CUSUM Statistics
AU - Romano, Gaetano
AU - Eckley, Idris A
AU - Fearnhead, Paul
AU - Rigaill, Guillem
PY - 2023/3/31
Y1 - 2023/3/31
N2 - Many modern applications of online changepoint detection require the ability to process high-frequency observations, sometimes with limited available computational resources. Online algorithms for detecting a change in mean often involve using a moving window, or specifying the expected size of change. Such choices affect which changes the algorithms have most power to detect. We introduce an algorithm, Functional Online CuSUM (FOCuS), which is equivalent to running these earlier methods simultaneously for all sizes of windows, or all possible values for the size of change. Our theoretical results give tight bounds on the expected computational cost per iteration of FOCuS, with this being logarithmic in the number of observations. We show how FOCuS can be applied to a number of different changes in mean scenarios, and demonstrate its practical utility through its state-of-the-art performance at detecting anomalous behaviour in computer server data.
AB - Many modern applications of online changepoint detection require the ability to process high-frequency observations, sometimes with limited available computational resources. Online algorithms for detecting a change in mean often involve using a moving window, or specifying the expected size of change. Such choices affect which changes the algorithms have most power to detect. We introduce an algorithm, Functional Online CuSUM (FOCuS), which is equivalent to running these earlier methods simultaneously for all sizes of windows, or all possible values for the size of change. Our theoretical results give tight bounds on the expected computational cost per iteration of FOCuS, with this being logarithmic in the number of observations. We show how FOCuS can be applied to a number of different changes in mean scenarios, and demonstrate its practical utility through its state-of-the-art performance at detecting anomalous behaviour in computer server data.
M3 - Journal article
VL - 24
SP - 1
EP - 36
JO - Journal of Machine Learning Research
JF - Journal of Machine Learning Research
SN - 1532-4435
ER -