Home > Research > Publications & Outputs > Femtosecond photocurrents at the FeRh/Pt interface

Electronic data

  • Author_accepted_Manuscript

    Rights statement: Copyright 2022 American Institute of Physics. The following article appeared in Applied Physics Letters, 117, 2020 and may be found at https://aip.scitation.org/doi/full/10.1063/5.0026252 This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

    Accepted author manuscript, 1.15 MB, PDF document

    Available under license: CC BY: Creative Commons Attribution 4.0 International License

Links

Text available via DOI:

View graph of relations

Femtosecond photocurrents at the FeRh/Pt interface

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
Close
Article number142406
<mark>Journal publication date</mark>8/10/2020
<mark>Journal</mark>Applied Physics Letters
Issue number14
Volume117
Number of pages6
Publication StatusPublished
Early online date8/10/20
<mark>Original language</mark>English

Abstract

Femtosecond laser excitations of FeRh/Pt bilayers launch an ultrafast pulse of electric photocurrents in the Pt-layer and subsequently result in the emission of electromagnetic radiation in the THz spectral range. Analysis of the THz emission as a function of the polarization of the femtosecond laser pulse, external magnetic field, sample temperature, and sample orientation shows that the photocurrent can emerge due to vertical spin pumping and photo-induced inverse spin-orbit torque at the FeRh/Pt interface. The vertical spin pumping from FeRh into Pt does not depend on the polarization of light and originates from ultrafast laser-induced demagnetization of the ferromagnetic phase of FeRh. The photo-induced inverse spin-orbit torque at the FeRh/Pt interface can be described in terms of a helicity-dependent effect of circularly polarized light on the magnetization of the ferromagnetic FeRh and the subsequent generation of a photocurrent. © 2020 Author(s).

Bibliographic note

Copyright 2022 American Institute of Physics. The following article appeared in Applied Physics Letters, 117, 2020 and may be found at https://aip.scitation.org/doi/full/10.1063/5.0026252 This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.