Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - High-dimensional time series segmentation via factor-adjusted vector autoregressive modelling
AU - Cho, Haeran
AU - Maeng, Hyeyoung
AU - Eckley, Idris A.
AU - Fearnhead, Paul
PY - 2024/7/2
Y1 - 2024/7/2
N2 - Vector autoregressive (VAR) models are popularly adopted for modelling high-dimensional time series, and their piecewise extensions allow for structural changes in the data. In VAR modelling, the number of parameters grow quadratically with the dimensionality which necessitates the sparsity assumption in high dimensions. However, it is debatable whether such an assumption is adequate for handling datasets exhibiting strong serial and cross-sectional correlations. We propose a piecewise stationary time series model that simultaneously allows for strong correlations as well as structural changes, where pervasive serial and cross-sectional correlations are accounted for by a time-varying factor structure, and any remaining idiosyncratic dependence between the variables is handled by a piecewise stationary VAR model. We propose an accompanying two-stage data segmentation methodology which fully addresses the challenges arising from the latency of the component processes. Its consistency in estimating both the total number and the locations of the change points in the latent components, is established under conditions considerably more general than those in the existing literature. We demonstrate the competitive performance of the proposed methodology on simulated datasets and an application to US blue chip stocks data.
AB - Vector autoregressive (VAR) models are popularly adopted for modelling high-dimensional time series, and their piecewise extensions allow for structural changes in the data. In VAR modelling, the number of parameters grow quadratically with the dimensionality which necessitates the sparsity assumption in high dimensions. However, it is debatable whether such an assumption is adequate for handling datasets exhibiting strong serial and cross-sectional correlations. We propose a piecewise stationary time series model that simultaneously allows for strong correlations as well as structural changes, where pervasive serial and cross-sectional correlations are accounted for by a time-varying factor structure, and any remaining idiosyncratic dependence between the variables is handled by a piecewise stationary VAR model. We propose an accompanying two-stage data segmentation methodology which fully addresses the challenges arising from the latency of the component processes. Its consistency in estimating both the total number and the locations of the change points in the latent components, is established under conditions considerably more general than those in the existing literature. We demonstrate the competitive performance of the proposed methodology on simulated datasets and an application to US blue chip stocks data.
KW - Statistics, Probability and Uncertainty
KW - Statistics and Probability
U2 - 10.1080/01621459.2023.2240054
DO - 10.1080/01621459.2023.2240054
M3 - Journal article
VL - 119
SP - 2038
EP - 2050
JO - Journal of the American Statistical Association
JF - Journal of the American Statistical Association
SN - 0162-1459
IS - 547
ER -