Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Improving topological cluster reconstruction using calorimeter cell timing in ATLAS
AU - The ATLAS collaboration
AU - Barton, A.E.
AU - Bertram, I.A.
AU - Borissov, G.
AU - Bouhova-Thacker, E.V.
AU - Ferguson, Ruby
AU - Ferrando, James
AU - Fox, H.
AU - Hagan, Alina
AU - Henderson, R.C.W.
AU - Jones, R.W.L.
AU - Kartvelishvili, V.
AU - Love, P.A.
AU - Marshall, E.J.
AU - Meng, L.
AU - Muenstermann, D.
AU - Ribaric, N.
AU - Rybacki, K.
AU - Smizanska, M.
AU - Spinali, S.
AU - Wharton, A.M.
PY - 2024/5/3
Y1 - 2024/5/3
N2 - Clusters of topologically connected calorimeter cells around cells with large absolute signal-to-noise ratio (topo-clusters) are the basis for calorimeter signal reconstruction in the ATLAS experiment. Topological cell clustering has proven performant in LHC Runs 1 and 2. It is, however, susceptible to out-of-time pile-up of signals from soft collisions outside the 25 ns proton-bunch-crossing window associated with the event’s hard collision. To reduce this effect, a calorimeter-cell timing criterion was added to the signal-to-noise ratio requirement in the clustering algorithm. Multiple versions of this criterion were tested by reconstructing hadronic signals in simulated events and Run 2 ATLAS data. The preferred version is found to reduce the out-of-time pile-up jet multiplicity by $${\sim }50\%$$ ∼ 50 % for jet $$p_{\textrm{T}}\sim 20$$ p T ∼ 20 GeV and by $${\sim }80\%$$ ∼ 80 % for jet $$p_{\textrm{T}} \gtrsim 50$$ p T ≳ 50 GeV, while not disrupting the reconstruction of hadronic signals of interest, and improving the jet energy resolution by up to 5% for $$20< p_{\textrm{T}} < 30$$ 20 < p T < 30 GeV. Pile-up is also suppressed for other physics objects based on topo-clusters (electrons, photons, $$\tau $$ τ -leptons), reducing the overall event size on disk by about $$6\%$$ 6 % in early Run 3 pile-up conditions. Offline reconstruction for Run 3 includes the timing requirement.
AB - Clusters of topologically connected calorimeter cells around cells with large absolute signal-to-noise ratio (topo-clusters) are the basis for calorimeter signal reconstruction in the ATLAS experiment. Topological cell clustering has proven performant in LHC Runs 1 and 2. It is, however, susceptible to out-of-time pile-up of signals from soft collisions outside the 25 ns proton-bunch-crossing window associated with the event’s hard collision. To reduce this effect, a calorimeter-cell timing criterion was added to the signal-to-noise ratio requirement in the clustering algorithm. Multiple versions of this criterion were tested by reconstructing hadronic signals in simulated events and Run 2 ATLAS data. The preferred version is found to reduce the out-of-time pile-up jet multiplicity by $${\sim }50\%$$ ∼ 50 % for jet $$p_{\textrm{T}}\sim 20$$ p T ∼ 20 GeV and by $${\sim }80\%$$ ∼ 80 % for jet $$p_{\textrm{T}} \gtrsim 50$$ p T ≳ 50 GeV, while not disrupting the reconstruction of hadronic signals of interest, and improving the jet energy resolution by up to 5% for $$20< p_{\textrm{T}} < 30$$ 20 < p T < 30 GeV. Pile-up is also suppressed for other physics objects based on topo-clusters (electrons, photons, $$\tau $$ τ -leptons), reducing the overall event size on disk by about $$6\%$$ 6 % in early Run 3 pile-up conditions. Offline reconstruction for Run 3 includes the timing requirement.
U2 - 10.1140/epjc/s10052-024-12657-1
DO - 10.1140/epjc/s10052-024-12657-1
M3 - Journal article
VL - 84
JO - European Physical Journal C: Particles and Fields
JF - European Physical Journal C: Particles and Fields
SN - 1434-6044
IS - 5
M1 - 455
ER -