Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Independent regulation of synaptic size and activity by the anaphase-promoting complex
AU - Van Roessel, Peter
AU - Elliott, David A.
AU - Robinson, Iain M.
AU - Prokop, Andreas
AU - Brand, Andrea H.
PY - 2004/11/24
Y1 - 2004/11/24
N2 - Neuronal plasticity relies on tightly regulated control of protein levels at synapses. One mechanism to control protein abundance is the ubiquitin-proteasome degradation system. Recent studies have implicated ubiquitin-mediated protein degradation in synaptic development, function, and plasticity, but little is known about the regulatory mechanisms controlling ubiquitylation in neurons. In contrast, ubiquitylation has long been studied as a central regulator of the eukaryotic cell cycle. A critical mediator of cell-cycle transitions, the anaphase-promoting complex/cyclosome (APC/C), is an E3 ubiquitin ligase. Although the APC/C has been detected in several differentiated cell types, a functional role for the complex in postmitotic cells has been elusive. We describe a novel postmitotic role for the APC/C at Drosophila neuromuscular synapses: independent regulation of synaptic growth and synaptic transmission. In neurons, the APC/C controls synaptic size via a downstream effector Liprin-α; in muscles, the APC/C regulates synaptic transmission, controlling the concentration of a postsynaptic glutamate receptor.
AB - Neuronal plasticity relies on tightly regulated control of protein levels at synapses. One mechanism to control protein abundance is the ubiquitin-proteasome degradation system. Recent studies have implicated ubiquitin-mediated protein degradation in synaptic development, function, and plasticity, but little is known about the regulatory mechanisms controlling ubiquitylation in neurons. In contrast, ubiquitylation has long been studied as a central regulator of the eukaryotic cell cycle. A critical mediator of cell-cycle transitions, the anaphase-promoting complex/cyclosome (APC/C), is an E3 ubiquitin ligase. Although the APC/C has been detected in several differentiated cell types, a functional role for the complex in postmitotic cells has been elusive. We describe a novel postmitotic role for the APC/C at Drosophila neuromuscular synapses: independent regulation of synaptic growth and synaptic transmission. In neurons, the APC/C controls synaptic size via a downstream effector Liprin-α; in muscles, the APC/C regulates synaptic transmission, controlling the concentration of a postsynaptic glutamate receptor.
U2 - 10.1016/j.cell.2004.11.028
DO - 10.1016/j.cell.2004.11.028
M3 - Journal article
C2 - 15550251
AN - SCOPUS:8844276742
VL - 119
SP - 707
EP - 718
JO - Cell
JF - Cell
SN - 0092-8674
IS - 5
ER -